• Title/Summary/Keyword: 균열 탐사

Search Result 101, Processing Time 0.023 seconds

Investigation for Detecting the Poorly Grouting of a PC Girder Bridge (충격탄성파법을 이용한 PC형교의 그라우트 미충전부 탐사측정)

  • Lee, Sang-Hun;Sagara, Yuzo;Endo, Takao
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • PC형교에서는 거더의 복부와 하부에 PC강선을 수용하는 쉬이스가 배치되어 있어며, 그 내부에 그라우트를 충전함으로서 PC강선과 콘크리트를 간접적으로 부착시킨다. 그러나, 이 충전이 불충분하면, 쉬이스 내부에 물이 침투하여 PC강선이 부식하거나, 동결융해 작용에 의한 쉬이스 배치 위치에서의 횡방향 균열이 발생한다. 본 연구에서는, 충격탄성파법을 이용하여 실구조물에 대한 그라우트 미충전부 탐사측정을 실시하고, 미충전부로 보여지는 장소를 천공으로 확인함으로서 본 방법의 실용성에 대하여 보고한다.

  • PDF

A 3D ground penetrating radar imaging of the heavy rainfall-induced deformation around a river levee: a case study of Ara River, Saitama, Japan (폭우에 의해 발생된 강 제방 주변 변형의 3차원 GPR 영상화: 일본 사이타마현의 아라강에 대한 현장적용사례)

  • Yokota, Toshiyuki;Inazaki, Tomio;Shinagawa, Shunsuke;Ueda, Takumi
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2009
  • This paper describes a three-dimensional ground penetrating radar (GPR) survey carried out around a levee of the Ara River in Saitama, Japan, where deformation of the ground was observed after heavy rainfall associated with the typhoon of September 2007. The high-density 3D GPR survey was conducted as a series of closely adjacent four directional sets of 2D surveys at an area surrounding vertical cracks on the paved road caused by deformations induced by heavy rain. The survey directions of the 2D surveys were 0, 90, 45, and -45 degrees with respect to the paved road and the intervals between lines were less than 0.5 m. The 3D subsurface structure was accurately imaged by the result of data processing using Kirchhoff-type 3D migration. As a result, locations and vertical continuities of the heavy rainfall induced cracks in the paved road were clearly imaged. This will be a great help in considering the generation mechanisms of the cracks. Moreover, the current risk of a secondary disaster was found to be low, as no air-filled cavities were detected by the 3D GPR survey.

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

Velocity-porosity relationships in oceanic basalt from eastern flank of the Juan de Fuca Ridge: The effect of crack closure on seismic velocity (Juan do Fuca 해저산맥의 동쪽 측면으로부터 얻은 해양성 현무암의 속도와 공극률의 관계: 균열닫힘이 탄성파 속도에 미치는 영향)

  • Tsuji, Takeshi;Iturrino, Gerardo J.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2008
  • To construct in situ velocity-porosity relationships for oceanic basalt, considering crack features, P- and S-wave velocity measurements on basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge were carried out under confining pressures up to 40 MPa. Assuming that the changes in velocities with confining pressures are originated by micro-crack closure, we estimated micro-crack aspect ratio spectra using the Kuster-$Toks{\ddot{o}}z$ theory. The result demonstrates that the normalised aspect ratio spectra of the different samples have similar characteristics. From the normalised aspect ratio spectrum, we then constructed theoretical velocity-porosity relationships by calculating an aspect ratio spectrum for each porosity. In addition, by considering micro-crack closure due to confining pressure, a velocity-porosity relationship as a function of confining pressure could be obtained. The theoretical relationships that take into account the aspect ratio spectra are consistent with the observed relationships for over 100 discrete samples measured at atmospheric pressure, and the commonly observed pressure dependent relationships for a wide porosity range. The agreement between the laboratory-derived data and theoretically estimated values demonstrates that the velocity-porosity relationships of the basaltic samples obtained from the eastern flank of the Juan de Fuca Ridge, and their pressure dependence, can be described by the crack features (i.e. normalised aspect ratio spectra) and crack closure.

Case Study on the Failure Causes of Gneiss Slope Occurred Tension Crack (편마암비탈면에서 인장균열 파괴원인 사례 연구)

  • Chun, Byungsik;Noh, Insoo;Kong, Jinyoung;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.27-35
    • /
    • 2012
  • The discontinuity of rock is one of important elements that have impact on the dynamic movement of rock. A slope made of gneiss has complicated geological structure because of the gneiss forming process through metamorphism covering wide range and the anisotropic structure with foliation. In this study, before cutting slope, the rock of slope had been found as a good quality by the boring test. But during construction tension cracks had occurred in the section with 170m length during large-scale excavation work with depth more than 20m. Ground surface geological investigation, boring exploration, resistivity logging and borehole image processing had been done to find the causes of the tension crack. It was possible to estimate the scale of fault existing in large area through resistivity logging and geological investigation. Large scale slickenside and fault clay had been found as the result of comprehensive analysis.

Source Mechanism of an Explosive Eruption at White Island Volcano, New Zealand, Determined from Waveform Inversions (모멘트 텐서를 이용한 White Island 화산분화 지진원 메커니즘 분석)

  • Han, Arim;Kim, Keehoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • We studied the source mechanisms of very-long-period event recorded at seismic station WIZ near White Island Volcano, New Zealand on August 4, 2012. Since seismic data at only one station were available, we conducted moment tensor inversion using three simplified models (explosion, crack, and pipe models). To constrain the moment tensor solution of seismic event, we computed synthetic data for each model to compare with observed data. Type and orientation for the best model is a crack at a depth of 1600 m with a dip of $80^{\circ}NE$ and a strike of $N80^{\circ}W$. We interpret that a deep explosion may have opened a crack for gases to escape, and the upward gas flow triggered the surface explosions four hours later as confirmed by a webcam. The interpretation based on moment tensor inversion is consistent with previous studies of geochemical data of the volcanic island.

Experiments on the Detection of Delamination in FRP Reinforced Concrete (탄소섬유 보강 콘크리트의 박리 탐사 실험)

  • Rhim, Hong-Chul;Jung, Hang-Chul;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques, microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymers (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in the measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with hom antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding between concrete and FRP. Also, ultrasonic method is used for the same condition. Both results are compared with each other.

The Design and Implementation of the Explorer Robot Adaptive Pipe Magnitude Width and Curve (파이프 크기와 굴곡에 적응하는 탐사로봇 설계 및 구현)

  • Lee, Kwang-Seok;Lee, Byeong-Ro;Choo, Yeon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.602-607
    • /
    • 2009
  • Most of explorer robot in past has the fixed magnitude and communicate with wire communication method. In case of various range of pipe's width and various angle in pipe inter structure, the exploring work is very difficult. Thus, in this paper, we design as dealing with spring tension with pushing out pipe exterior, and applied RF communication. We can accept good performance both structure change and improvement of ability, monitor and collect the defaults data in pipe inter structure. Newly designed and developed pipe explorer robot is very advantageous to carrying and driving as being small and law weight.

Delineation of water seepage in earth-fill embankments by electrical resistivity method (전기비저항탐사에 의한 제당의 누수구간 탐지)

  • 정승환;김정호;양재만;한규언;김영웅
    • The Journal of Engineering Geology
    • /
    • v.2 no.1
    • /
    • pp.47-57
    • /
    • 1992
  • Geophysical methods applied to water seepage problem in earth-fill embankment attempt to detect and map the estimate of size and depth of the seepage path. Seepage zones generally produce lOW resistivity anomalies due to high saturation of water. Dipole-dipole resistivity surveying technique, which is actually a combined sounding-profiling procedure, was used to delineate the seepage path through this study. In this study, the finite difference methods to solve the electric potential distribution in 2 112 dimension, was adopted as the numerical scheme for the forward problem. Second order Marquart's method, one the iterative damped least square methods, was selected for the automatic inversion. The computer program was implemented in FORTRAN 77 for 1 6-bit personal computer. In this paper, we present a case history which illustrates the application of dipole-dipole resistivity method to the delineation of water flow in earth-fill structures. Also the automatic two-dimensional resistivity inversion was applied to a field data where the interpretive advantages of the program become evident.

  • PDF

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data (미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발)

  • Lee, Sangmin;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.111-120
    • /
    • 2016
  • In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.