• Title/Summary/Keyword: 균열 제어

Search Result 451, Processing Time 0.024 seconds

Shear Performance of Large-Diameter Composite PHC Pile Strengthened by In-Filled Concrete and Shear Reinforcement (속채움 콘크리트와 전단철근을 사용한 대구경 합성 PHC말뚝의 전단보강 성능)

  • Hyun, Jung-Hwan;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2017
  • Recently, the demand for large diameter piles has been rapidly increased in order to secure the allowable bearing capacity of pile foundation due to the increase of large structures such as high rise buildings. In this study, to improve the shear capacity of a conventional PHC pile, a large diameter composite PHC pile strengthened by in-filled concrete and shear reinforcement was manufactured. All the piles were tested according to the shear strength test method of Korean Standard. As a result of the shear test, the F-type piles which are produced without shear reinforcement occurred abrupt horizontal cracks after flexural and inclined shear cracks occurred. On the contrary, the FT-type piles which are produced with shear reinforcement exhibited stable flexural and inclined shear cracks uniformly over the entire pile without abrupt horizontal cracks. Furthermore, the maximum load of the large diameter composite PHC pile improved to 2.9 times in the F series, and more than 3.3 times in the FT series compared to the conventional PHC pile. This result indicated that FT-type piles had excellent composite behavior due to the shear reinforcement and effectively prevented the unstable growth of inclined shear cracks.

Control of Steaming Process for the Production of High Quality Red Ginseng (고급 홍삼 생산을 위한 증삼공정의 제어)

  • Kim, Sin;Na, Younghoon;Lee, Jietae;Cho, Wonhui
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.587-591
    • /
    • 2014
  • Experiments for a control method that enhances the yield to produce high quality red ginsengs have been performed. In the first steaming process of a series of processes to produce red ginsengs from raw ginsengs, there occur several undesirable defects on ginsengs such as cracks of ginseng body, inside cavity and inside white. These defects lead to deterioration in product qualities. Therefore an improved control method that minimizes these undesirable defects is needed in order to increase the yield of high quality red ginsengs. Until these days, the steaming process control methods such as controlling the steaming temperature and/or pressure have been studied. However, such control methods are not adequate enough to minimize the undesirable defects in steamed ginsengs. On the other hand, in this experiment, we suggest a control method that minimizes the undesirable defects through a weight control of steamed ginsengs, keeping the steaming temperature at $96{\sim}99^{\circ}C$ as usual. Experiments with the weight control show that amount of cracks on the steamed ginseng body can be reduced.

Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis (유한요소법을 이용한 원자로 상부헤드 CRDM 관통노즐 J-Groove 보수용접 영향 분석)

  • Kim, Ju Hee;Yoo, Sam Hyeon;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.637-647
    • /
    • 2014
  • In pressurized water reactors, the upper head of the reactor pressure vessel (RPV) contains numerous control rod drive mechanism (CRDM) nozzles. These nozzles are fabricated by welding after being inserted into the RPV head with a room temperature shrink fit. The tensile residual stresses caused by this welding are a major factor in primary water stress corrosion cracking (PWSCC). Over the last 15 years, the incidences of cracking in alloy 600 CRDM nozzles have increased significantly. These cracks are caused by PWSCC and have been shown to be driven by the welding residual stresses and operational stresses in the weld region. Various measures are being sought to overcome these problems. The defects resulting from the welding process are often the cause of PWSCC acceleration. Therefore, any weld defects found in the RPV manufacturing process are immediately repaired by repair welding. Detailed finite-element simulations for the Korea Nuclear Reactor Pressure Vessel were conducted in order to predict the magnitudes of the repair weld residual stresses in the tube materials.