• Title/Summary/Keyword: 균열 분석

Search Result 1,643, Processing Time 0.032 seconds

Modeling of Multi-Stage Hydraulic Fracture Propagation (다단계 수압파쇄균열 전파 모델링 연구)

  • Jang, Youngho;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.13-19
    • /
    • 2015
  • This paper presents a hydraulic fracture propagation model to describe propagation more realistically. In propagating the hydraulic fractures, we have used two criteria: maximum tangential stress to determine the fracture initiation angle and whether a hydraulic fracture intersects a natural fracture. The model was validated for the parameters relevant to fracture propagation, such as initiation angle and crossing ability through natural fracture. In order to check whether a hydraulic fracture crosses a natural fracture, the model results on crossing state excellently matched with the experimental data. In the sensitivity analysis for direction of maximum horizontal stress, frictional coefficient of fracture interface, and natural fracture orientation, the results show that hydraulic fracture intersects natural fracture, and then, propagated suitably with theoretical results according to fracture interaction criterion. In comparison of this model against vertical fracture approach, it was ascertained that there are discrepancies in fracture connectivity and stimulated reservoir volume.

Analysis of Cracking Characteristics with Indenter Geometry Using Cohesive Zone Model (Cohesive Zone Model을 이용한 압입자 형상에 따른 균열특성분석)

  • Hyun, Hong Chul;Lee, Jin Haeng;Lee, Hyungyil;Kim, Dae Hyun;Hahn, Jun Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1453-1463
    • /
    • 2013
  • In this study, we investigated the effect of the indenter geometry on the crack characteristics by indentation cracking test and FEA. We conducted various cohesive finite element simulations based on the findings of Lee et al. (2012), who examined the effect of cohesive model parameters on crack size and formulated conditions for crack initiation and propagation. First, we verified the FE model through comparisons with experimental results that were obtained from Berkovich and Vickers indentations. We observed whether nonsymmetrical cracks formed beneath the surface during Berkovich indentation via FEA. Finally, we examined the relation between the crack size and the number of cracks. Based on this relation and the effect of the indenter angle on the crack size, we can predict from the crack size obtained with an indenter of one shape (such as Berkovich or Vickers) the crack size for an indenter of different shape.

Dimensionality Reduced Wave Transmission Function and Neural Networks for Crack Depth Estimation in Concrete Structures (차원 축소된 표면파 투과 함수와 인공신경망을 이용한 콘크리트 구조물의 균열 깊이 평가 기법)

  • Shin, Sung-Woo;Yun, Chung-Bang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.247-253
    • /
    • 2007
  • Determination of crack depth in filed using the self-calibrating surface wane transmission measurement and the cutting frequency in the transmission function (TRF) is very difficult due to variations of the measurement conditions. In this study, it is proposed to use the measured full TRF as a feature for crack depth assessment. A Principal component analysis (PCA) is employed to generate a basis of the measured TRFs for various crack cases. The measured TRFs are represented by their projections onto the most significant principal components. Then artificial neural networks (NNs) using the PCA-compressed TRFs is applied to assess the crack in concrete. Experimental study is carried out for five different crack cases to investigate the effectiveness of the proposed method. Results reveal that the proposed method can be effectively used for the crack depth assessment of concrete structures.

A Study on Damage Tolerance Assessment for the Butt Lap Joint Structure with the Effects of Fretting Fatigue Cracks (프레팅 피로균열 영향을 고려한 항공기 맞대기중첩연결 구조 손상허용성 연구)

  • Kwon, Jung-Ho;Hwang, Kyung-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The butt lap joint structures which are usually designed by the concept of slow crack growth damage tolerance, show frequently the behaviors of multiple site fatigue crack growth around the fastener hole edges due to the fretting between the two jointed parts. In this paper, experimental tests of fatigue crack growth have been performed of a bolted butt lap joint structure having an initial corner crack at the fastener hole edge, with different fretting conditions under a flight load spectrum. The obtained test results were reviewed to investigate the effects of fretting fatigue cracks on the damage tolerance crack growth life. Computations of corner crack growth were also carried out using an existed model to compare with test results.

A Study on the Effect of Flow Properties in Shale Gas Reservoirs (셰일가스 저류층에서의 동적물성 영향 분석)

  • Kim, Jung-Gyun;Kang, Il-Oh;Shin, Chang-Hoon;Lee, Seong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2017
  • Shale gas reservoir are composed of very fine grained particles, and their pores are very small, at the scale of nanometers. In this study, a parametric study was implemented to investigate the effect of knudsen diffusion, relative permeability and permeability reduction in shale gas reservoir. Shale gas reservoir model in Horn-River was developed to confirm the productivity for different design parameters such as diffusion, relative permeability, connate water saturation, and permeability reduction.

Crack Spacing in RC Tension Members Considering Cover Thickness and Concrete Compressive Strength (피복두께와 콘크리트 강도를 고려한 철근콘크리트 인장부재의 균열간격)

  • Kim, Woo;Lee, Ki-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper proposed a crack spacing calculation formulation which is an important parameter for calculating the crack width, that is the main factor for verification of serviceability limit states and durability performance evaluation of reinforced concrete members. The basic equation of average crack spacing is derived by considering the bond characteristics which is the governing equation for the analysis of cracking behavior in reinforced concrete members. In order to consider the effect of the cover thickness and concrete compressive strength, the crack spacing measured in 124 direct tensile tests performed by several researchers was analyzed and each coefficient was proposed. And, correlation analysis was performed from 80 specimen data where the maximum and average crack spacing were simultaneously measured, and a correlation coefficient that can easily predict the maximum crack spacing from the average crack spacing was proposed. The results of the proposed average crack spacing equation and maximum crack spacing correlation were compared with those current design code specification. The comparisons of proposed equations and the Korean design codes show that the proposed formulation for the average crack spacing and the maximum crack spacing improves the accuracy and reliability of prediction compared to the corresponding provisions of the Korean Concrete Structural Design Code and Korean Highway Bridge Design Code (Limit States Design).

Effect of Temperature on Joint Movement of JPCP at Its Early Age (재령초기 콘크리트포장 줄눈거동에 미치는 온도의 영향)

  • Choi, Ki-Hyo;Jeong, Jin-Hoon;Chun, Sung-Han;Park, Moon-Gil
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.340-343
    • /
    • 2007
  • The temperature variation of concrete pavement at early-age significantly affects the initiation and movement of joint cracks. For this analysis, we have built on IIA(Incheon International Airport) concrete pavement construction zone, and we measured the temperature and movement of the concrete slabs by using thermocouples, moisture sensors, V/W strain gages, and Demac discs. The analysis results showed that pavement's temperature significantly affected the joint movement. The widths of the joint cracks increased at evening and early in the morning when the temperature dropped but, those decreased in the day time when the temperature rose because of the effect of thermal expansion of the concrete slabs. The movements of the joints where the cracks never developed showed opposite trend to the cracked joints.

  • PDF

Microscopic Analysis of the Rock Cleavage for Jurassic Granite in Korea (주라기 화강암에 발달하는 결의 현미경학적 분석)

  • 박덕원;서용석;정교철;김영기
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • Jurassic granites of three sites, Pocheon, Geochang and Habcheon, were analysed with respect to the characteristics of the rock cleavage. Microscopic analysis for the oriented thin sections of the specimens was conducted by using the scanline survey technique to measure microcrack direction, spacing and length. The results showed that the preferred orientations of microcrack developed in quartz and feldspar arc coincident with the orientation of quarry planes. The length of microcrack is related to grain size. The length of microcrack in coarse-grained granite is longer than that in relatively fine-grained granite. In all granites, microcracks related to the preferred orientations are well developed in order of rift, grain and hardway planes in number, length and density.

  • PDF

균열암반에서의 양수시험자료 해석과 일반화 방사상 유동모델의 적용성 연구

  • 성현정;김용제;우남칠;이철우;김구영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.493-496
    • /
    • 2003
  • 이 연구는 우리나라 균열암반 대수층의 수리적 특성을 해석ㆍ평가하기 위하여 양수시험 해석해(Theis, 1935; Cooper-Jacob, 1946; Papadopulos-Cooper, 1967; Hantush, 1962a,b; Moench, 1985; Hantush-Jacob, 1955) 및 일반화 방사상 유동 모델을 이용하여 균열암반 대수층(화강암, 화산암, 변성암, 백악기퇴적암, 제3기 퇴적암에 굴착된 100개 조사공)에서 수행되어진 양수시험으로부터 얻은 122개의 양수시험자료(수위강하 자료)를 분석하였다. AQTESOLV 전산프로그램을 이용한 양수시험자료 분석에 의하면, 122개 자료중 86개(71%)의 자료들이 이 연구에 사용된 해석해와 일치하며, 양수시험자료 해석해 중에 누수(leaky) 및 경계조건(boundary condition)을 고려한 해석해들이 53개(43%)로 가장 많이 나타났다. 그러므로, 양수시험자료의 해석은 균열암반 대수층의 수리지질학적 특성에 적합한 개념모델의 설정이 중요하다. 일반화 방사상 유동(GRF)모델을 적용해보면, 122개의 자료중 77개(63%)의 자료들이 Barker(1988)의 표준곡선에 의한 차원(1.1차원-2.9차원)을 보여준다. 이중 44.2%에 해당하는 39개 자료가 1.1차원과 1.9차원 사이의 분할 유동차원을 보여주는 반면에 26개(6.5%)만이 Theis 이론에 맞는 2차원의 방사상 흐름을 보여주며, 38개(49.3%)는 2.1차원에서 2.9차원에 속한다. 따라서 우리나라 균열암반 대수층에서 지하수 유동은 대부분 분할차원의 유동을 보여주는 것으로 평가된다.

  • PDF

콘크리트 표면차수벽형 석괴댐의 균열원인 분석

  • 김광일;장동일;채원규;원일석;조광현;손영현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.11a
    • /
    • pp.423-428
    • /
    • 2000
  • 콘크리트구조물은 비교적 경제적인 시공이 가능하며 구조물의 수명 또한 안정적인 관계로 널리 사용되어 왔다. 그러나 최근 콘크리트의 고강도화 및 설계의 최적화에 따른 부재단면의 최소화 경향, 새로운 공법의 적용 등에 따른 균열문제가 빈번하게 대두되고 있는 실정이다. 특히 다양한 토목구조물중 매스콘크리트구조물, 벽체구조물 등과 같은 종류에서의 균열문제가 자주 언급되고 있으며, 균열에 따른 심리적 불안감과 콘크리트 내구성의 저하, 궁극적으로는 구조물의 안전성에 대한 불안심리를 가증 시키고 있다.(중략)

  • PDF