• Title/Summary/Keyword: 균열특성

Search Result 2,071, Processing Time 0.255 seconds

Properties of Nonwaxy Rice Flours with Different Soaking Time and Particle Sizes (수침시간과 입자크기가 다른 멥쌀가루의 특성)

  • Lee, Mi-Kyung;Kim, Jeong-Ok;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.268-275
    • /
    • 2004
  • Effects of soaking time and particle size on physicochemical properties of nonwaxy rice flour were investigated. Nonwaxy rice grains were soaked at $4^{\circ}C$ for 0, 1, 12, and 24 hr, dried at room temperature, and milled, Resulting flours were passed through 45-mesh ($<355{\mu}m,\;IL45$) and 100-mesh ($<150{\mu}m\;IL100$) sieves and separated into $<40{\mu}m\;and\;40-100{\mu}m$ series. IL45 series showed higher amount of large particles ($40-100{\mu}m$) than IL100 series. As the soaking time increased, protein and ash contents decreased, and amylose content, water-binding capacity, swelling power, and solubity of nonwaxy rice flours increased. Swelling power and solibility of nonwaxy rice flours also increased between $65-85^{\circ}C$. Water-binding capacity, swelling power, and solubility of IL100 series were higher than those of IL45 series. 12 hr-soaked nonwaxy rice flour pastes showed higher peak viscosity and breakdown but lower setback and visicosity at $95\;and\;50^{\circ}C$ than 1 hr-soaked ones. X-Ray diffractograms of nonwaxy rice flours were not affected, whereas surface appearance was affected, by soaking time and particle size.

A Mineralogical Study on the Arsenic Behavior in the Tailings of Nakdong Mine (낙동광산의 광미 내 비소 거동에 대한 광물학적 연구)

  • Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.359-370
    • /
    • 2009
  • Arsenic and heavy metals leached out as a result of oxidation of tailings exposed to the surface pose a serious environmental contamination of mine areas. This study investigated how arsenic behavior is controlled by a variety of processes, such as oxidation of sulfides and formation or alteration of secondary minerals, based on mineralogical methods. The study was carried out using the tailing samples obtained from Nakdong mine located in Jeongseongun, Gangwondo. After separating magnetic and non-magnetic minerals using pretreated tailing samples, each mineral sample was classified according to their colors and metallic lusters observed by the stereoscopic microscope. Subsequently, the mineralogical properties were determined using various instrumental analyses, such as x-ray diffractometer (XRD), energy dispersive spectroscopy (EDS), and electron probe micro analyzer (EPMA). The literature review confirmed that various ore minerals were identified in the Nakdong ore deposits. In this study, however, there were observed a few original ore minerals as well as secondary and/or tertiary minerals newly formed as a result of weathering including oxidation. In particular, we did not recognize pyrrhotite which has been known to originally exist in a large abundance, but peculiarly colloform-type iron (oxy)hydroxides were identified, which indicates most of pyrrhotite has been altered by rapid weathering due to its large reactivity. In addition, a secondary scorodites filling the fissure of weathered primary arsenopyrites were identified, and it is speculated that arsenic is immobilized through such a alteration reaction. Also, we observed tertiary iron (oxy)hydroxides were formed as a result of re-alteration of secondary jarosites, and it suggests that the environment of tailing has been changed to high pH from low pH condition which was initiated and developed by oxidation reactions of diverse primary ore minerals. The environmental change is mainly attributed to interactions between secondary minerals and parental rocks around the mine. As a result, not only was the stability of secondary minerals declined, but tertiary minerals were newly formed. As such a process goes through, arsenic which was immobilized is likely to re-dissolve and disperse into surrounding environments.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.

Impacts of Green Manure Crop and Charcoal Applications on Ginger Growth and Soil Properties (녹비작물 및 Charcoal 처리가 생강 생육 및 토양 특성에 미치는 영향)

  • Yang, Hong-Seok;Kim, Dong-Jin;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.3
    • /
    • pp.503-519
    • /
    • 2014
  • This study was conducted to investigate ginger growth and its nutrient uptake depending on changes of soil properties as affected by applications of green manure crop and/or charcoal in continuous cropping system. The green manure crops applied were barley and hairy vetch, and charcoal was additionally treated in selected plots as a soil conditioner. Experimental plots were prepared as Plot 1 (control), Plot 2 (barley of 8kg $10a^{-1}$), Plot 3 (hairy vetch of 12kg $10a^{-1}$), Plot 4 (charcoal of 1,000kg $10a^{-1}$ and barley 8kg $10a^{-1}$), and Plot 5 (charcoal of 1,000kg $10a^{-1}$ and hairy vetch of 12kg $10a^{-1}$) with two different soil conditions (high clay content, HCC and low clay content, LCC). When comparing selected chemical properties of soils before and after cultivating ginger plant, soil pH decreased from 6.9~8.1 to 6.8~7.6, and electrical conductivity (EC) also declined from $0.45{\sim}1.25dSm^{-1}$ to $0.30{\sim}0.61dSm^{-1}$. However, the content of soil organic matter (SOM) and total nitrogen (T-N) increased. Thus, the soil chemical properties were improved with the applications of green manures and charcoal. Also, macro- and micro-nutrient contents of ginger plants in the different plots were various between normal and diseased plants grown in soils with HCC and LCC. In particular, the concentration of manganese (Mn) was 3~4 folds higher in the diseased plant than in the normal plants. Ginger growth status and yield was relatively improved with the applications of green manures and charcoal as comparing with control plot. Especially in the Plot 4 with LCC, the ginger plant was not infected by root-rot disease.

Occurrence and Distribution of Manganese Nodules in KODOS-89 Area, Northeast Pacific (KODOS-89 지역 망간단괴의 산상 및 분포 특성)

  • 이경용;문재운
    • 한국해양학회지
    • /
    • v.27 no.3
    • /
    • pp.210-227
    • /
    • 1992
  • KODOS-89 area, the northwestern part of Clarion-Clarion-Clipperton fracture zones in the Northeast Pacific, was surveyed in order to study the occurrence and distribution of manganese nodules. Variations in the nodule characteristics are related mainly to seafloor topography. Nodules from abyssal plain have high Mn/Fe ratio and high Mn, Cu, Ni and Zn concentrations, whereas those from seamount are characterized by low Mn/Fe ratio and high Fe and Co concentrations. These compositional characteristics are attributed to toxic diagnosis and hydrogenesis, respectively. Nodules of the early diegenetic origin tend to accurate crystalline Mn-oxides uniformly within the topmost sediment layers and maintain a regular spheroidal, ellipsoidal to discoidal shape with rough surface textures. On the other hand, those of hydrogenetic origin are characterized by polynucleation, irregualr shape, and smooth surface textures. Nodule abundance is high (avg. 13.4 kg/m$^2$) in seamount area, resulting from ample supply of nucleating materials by auto-fragmentation of older nodules. Nodule abundance in abyssal plain is relatively low (avg. 3.9 kg/m$^2$) and tends to increase southward. This phenomenon results from facilitation of taking seed materials from adjacent seamount and enhancement of the early diagenesis by sufficient supply of organic materials. Nodule abundance is considered to be controlled primarily by seeding effects and secondly by supplies of organic materials.

  • PDF

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Digital Documentation and Short-term Monitoring on Original Rampart Wall of the Gyejoksanseong Fortress in Daejeon, Korea (대전 계족산성 원형성벽의 디지털기록화 및 단기모니터링 연구)

  • Kim, Sung Han;Lee, Chan Hee;Jo, Young Hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.169-188
    • /
    • 2019
  • This study was carried out unmanned aerial photography and terrestrial laser scanning to establish digital database on original wall of Gyejoksanseong fortress, and measured ground control points for continuity of the monitoring. It also performed precise examination with the naked eye, unmanned aerial photogrammetry, endoscopy, total station and handy measurement to examine the structural stability of the original walls. The ground control points were considered as a point where visual field can be secured, 3 points were selected around each of the south and north walls. For the right side of the south original wall, aerial photogrammetry was conducted using drones and a deviation analysis of 3-dimensional digital models was performed for short-term monitoring. As a result, the two original walls were almost matched in range within 5mm, and no difference indicating displacement of stones was found, except for partial deviation. Regular monitoring of the areas with structural deformation such as bulging, weak and fracture zone by precisely examining with the naked eye and using high-resolution photo data revealed no distinct change. The inner foundation observed through endoscopy found out that filling stones of the original walls were still remained, while most filling soil was lost. As a result of measuring the total station focusing around the points with structural deformation on the original walls, the maximum displacements of the north and south walls were somewhat high with 6.6mm and 3.8mm, respectively, while the final displacements were relatively stable at below 2.9mm and 1.4mm, respectively. Handy measurement also did not reveal clear structural deformation with displacements below 0.82mm at all points. Even though the results of displacement monitoring on the original walls are stable, it is hard to secure structural stability due to the characteristics of ramparts where sudden brittle fracture occurs. Therefore, it is necessary to conduct conservational scientific diagnosis, precise monitoring, and structural analysis based on the 3-dimensional figuration information obtained in this research.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(3))

  • Park, Deok-Won;Park, Eui-Seob;Jung, Yong-Bok;Lee, Tae-Jong;Song, Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.

How has 'Hakmun'(學問, learning) become converted into a modern concept? focused on 'gyeogchi'(格致) and 'gungni'(窮理) (학문(學問) 개념의 근대적 변환 - '격치(格致)', '궁리(窮理)' 개념을 중심으로 -)

  • Lee, Haeng-hoon
    • (The)Study of the Eastern Classic
    • /
    • no.37
    • /
    • pp.377-410
    • /
    • 2009
  • In the East Asian Confucianism society, Hakmun was aimed to bring human beings and nature into harmony, and to explore a unity between knowledge and conducts. For example, Neo-Confucianism aspired they could explain the human existence and society through a single concept of Iki(理氣, the basic principles and the atmospheric force of nature). In this philosophy, humanics and natural sciences had not been differentiated at all. The East-West cultural interchanges at the beginning of modernity caused a crack in the traditional academic concepts. Through the Hundred Days of Reform(變法自疆運動, a movement of Strenuous Efforts through Reforming the Law), the Western Affairs Movement(洋務運動) in China, Meiji Restoration(明治維新) in Japan, or Innovation Movements(開化運動) and the Patriotic Enlightenment Movement(愛國啓蒙運動) in Korea, the traditional meanings of Hakmun was degraded while it became a target of the criticism of the enlightenment movements. Accordingly, East Asians' perception of Hakmun rapidly began to change. Although there had been the Silhak(實學, practical science) movement in Korea, which tried to differentiate its conceptualization of Hakmun from that of Neo-Confucianism during the 18th and 19th century, the fundamental shift in meaning occurred with the influx of the modern Western culture. This change converted the ultimate objective of Hakmun as well as its methods and substances. The separation of humanics and natural sciences, rise in dignity of the technological sciences, and subdivision of learning into disciplines and their specialization were accelerated during the Korean enlightenment period. The inflow of the modern western science, humanized thought, and empiricism functioned as mediators in these phase and they caused an irreversible crack in the traditional academic thoughts. Confronting the western mode of knowledge, however, the East Asian intellectuals had to explain their new learning by using traditional terms and concepts; modification was unavoidable when they tried to explain the newly imported knowledge and concepts. This presentation focuses on the traditional concepts of 'gyeogchi'(格致, extending knowledge by investigating things) and 'gungni'(窮理, investigation of principles), pervasively used in philosophy, physics and many other fields of study. These concepts will mark the key point with which to trace changes of knowledge and to understand the way how the concept of Hakmun was converted into a modern one.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.