• Title/Summary/Keyword: 균열예측식

Search Result 160, Processing Time 0.019 seconds

Theoretical Analysis of Interface Debonding on the Strengthened RC Bridge Decks (성능향상된 RC 바닥판의 계면파괴 해석)

  • 오홍섭;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.668-676
    • /
    • 2002
  • Especially, when orthotropic material such as uni-dierectionally woven Carbon Fiber Sheet, resisting only the unidirectional tension, is used to strengthening bridge deck, the direction and width of the strengthening material should be considered very carefully. Thus, analysis of the failure characteristics and the premature failure mechanism of the strengthened decks based on the test results are required. In this study, the premature failure due to the interface debonding of strengthening material of the strengthened deck slab are inquired into failure mechanism through both experiments results and analyses with prototype strengthened deck specimens using carbon fiber sheet. From the test results, interface debonding of strengthening material is occured at the crack face

Estimation of Fatigue Life of Reinforced Asphalt Pavement Overlay against Reflection Cracking due to Flexural Fracture (보강 덧씌우기 아스팔트 포장의 휨파괴에 의한 반사균열 피로수명 추정)

  • Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.2 no.4 s.6
    • /
    • pp.101-109
    • /
    • 2000
  • This study was performed to estimate fatigue life of polymer-modified and reinforced overlay asphalt mixtures with respect to reflection cracking in asphalt overlay pavement. In order to achieve the goal, the expedited reflection cracking test method was developed and applied to various mixtures and the results were compared one another with respect to the resistant characteristics of reflection cracking. The theoretical prediction equation of fatigue life for each mixture was suggested based on statistical analysis of experimental test results in the flexural failure mode. Since coefficients of correlation between estimated values and measured values were very high ($r^2=0.95$ or higher), the prediction model can be used for relative comparison of various pavement overlay choices to be used in the field.

  • PDF

Estimation of Mechanical Properties of Concrete in Early Age by Resonance Frequency Test (공명주기식 동탄성계수를 이용한 초기재령 콘크리트의 역학적 성질 예측)

  • Kim, Jin-Keun;Kiim, Hoon;Noh, Jae-Ho
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.164-171
    • /
    • 1995
  • Drying shrinkage and hydration heat are important factors on the initiation of the crack in con crete at early age. Therefore, the stress caused by hydration heat and drying shrinkage should be .analyzed to predict whether the crack occurrs or not. And, mechanical properties of early age concrete is also required for the predicting crack formation In this study, non-destructive test method of resonance frequency was used to find the relation between dynamic modulus and mechanical properties of concrete in early age. Test results were compared with existing equations, and a new equation based on test. results in this study and other data was also proposed

Fatigue Crack shape Variations by a Residual Stress and Fatigue Life Predition (잔류응력에 의한 피로균열면 형상변화 및 수명예측)

  • 강용구;서창민;박원종
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.68-78
    • /
    • 1993
  • Fatigue crack shape variation by a residual stress during crack growth and life predition are studied. An analytical method is presented to predict the influence of a residual stress due to heattreatment on crack shape variations. Computer simulation results using this me thod are graphically shown that crack growth rate to surface direction are decreased due to compressive residual stress exisiting in surface area. These results are commpared with experimental results. The fatigue life is also predicted by computer simulation of crack aspect ratio variation which is based on the surface crack length increment per unit cycle calculated from a-N diagram. Predited life is about 12 percent lower than experimental life.

  • PDF

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

Estimation of Transient Creep Crack-tip Stress Fields for SE(B) specimen under Elastic-Plastic-Creep Conditions (탄성-소성-크리프 상태에서 SE(B) 시편의 천이크리프 균열 선단 응력장 평가)

  • Lee, Han-Sang;Je, Jin-Ho;Kim, Dong-Jun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1001-1010
    • /
    • 2015
  • This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

Fatigue Life Prediction by Elastic-Plastic Fracture mechanics for Surface Flaw Steel (표면결함재에 관한 탄소성 파괴역학에 의한 피로수명 예측)

  • Gang, Yong-Gu;Seo, Chang-Min;Lee, Jong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.112-122
    • /
    • 1995
  • In this work, prediction of fatigue life and fatigue crack growth are studied. 4th order polynominal function is presented to describe the crack growth behaviors from artifical pit of SM45C steel. Crack growth curves obtained from 4th order polyminal growth equations are in good agreement with experimental data The crack growth behaviors at arbitrary stress levels and investigated by the concept of elastic-plastic fracture mechanics using ${\Delta}J$. Fatigue life prediction are carried out by numerical integral method. Prediction lives obtained by proposed method in this study, is in good agreement with the experimental ones. Life prediction results calculated by using of ${\Delta}J$ better than those of ${\Delta}K$.

  • PDF

Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads (혼합모드 하중을 받는 균열시편의 피로균열진전거동 평가)

  • Han, Jeong Woo;Woo, Eun Taek;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.693-700
    • /
    • 2015
  • To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka's equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka's equation, and the Paris' equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

Crack Width Calculation Based on Bond Characteristics and Cracking Behavior of Reinforced Concrete Structures (부착특성과 균열거동을 고려한 철근콘크리트 구조물의 균열폭 계산)

  • Yang, Jun-Ho;Kim, Woo;Lee, Gi-Yeol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.944-952
    • /
    • 2009
  • This paper presents an analytical model for calculation of crack widths in reinforced concrete structures. The model is mathematically derived from the actual bond stress-slip relationships between the reinforcement and the surrounding concrete, and the relationships summarized in CEB-FIP Model Code 1990 and Eurocode 2 are employed in this study together with the numerical analysis result of a linear slip distribution along the interface at the stabilized cracking stage. With these, the actual strains of the steel and the concrete are integrated respectively along the embedment length between the adjacent cracks so as to obtain the difference in the axial elongation. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured data.

Control of Deck Cracking at Interior Supports of Continuous PSC-Beam Bridge (연속 PSC-Beam 교량의 지점부 균열제어)

  • 곽효경;서영재;정찬묵;박영하
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 1999
  • 이 연구는 2경간 연속 PSC-Beam 교량의 경간 내측 지지점의 바닥판에서 발생할 수 있는 균열의 제어에 관한 내용을 다루고 있다. PSC-Beam 교량은 주형인 PSC-Beam을 거치시킨후 바닥판을 현장타설 콘크리트로 시공된다. 이로 인하여 주형 콘크리트와 바닥판 콘크리트의 시간의존적 거동차이, 주형의 연속화에 따른 거동 등에 의하여 부모멘트가 가장 크게 걸리는 지점부에서 균열이 쉽게 발생된다. 따라서 이 논문에서는 2경간 연속 PSC-Beam 교량의 연속화에 따른 거동을 수치적 방법으로 해석하여 지점부 바닥판의 균열거동이 예측되었다. 이를 위하여 해석모델에는 콘크리트의 시간의존적 현상인 크리프와 건조수축이 고려되었으며, 2경간 연속 PSC-Beam 교량의 거동에 영향을 나타내는 여러 가지 인자가 고려되어 해석되었다. 끝으로 콘크리트의 모델식을 이용하여 지점부 균열을 억제하기 위한 현장에서 관리가능한 방안이 수치적으로 제안되었다.

  • PDF