• Title/Summary/Keyword: 균사생장 억제효과

Search Result 157, Processing Time 0.027 seconds

Control Efficacy of Carboxylic Acid Amide Fungicides against Pepper Phytophthora Blight Causing Phytophthora capsici (고추 역병에 대한 Carboxylic Acid Amide계 살균제의 방제 효과)

  • Shin, Jin-Ho;Kim, Jooh-Young;Kim, Hyeong-Jo;Choi, Young-Ki;Kim, A-Hyeong;Lee, Kyeong-Hee;Rho, Chang-Woo;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.463-472
    • /
    • 2010
  • It was conducted to investigate the control efficacy of carboxylic acid amide (CAA) fungicides, such as benthiavalicarb, iprovalicarb, dimethomorph and mandipropamid, against pepper Phytophthora blight caused by P. capsid in the laboratory and the field. The fungicides inhibited mycelial growth and direct sporangium germination of P. capsid strongly, while there was no activity of all fungicides against zoospore release from sporangium. In greenhouse test, they showed the good protective and curative effect against pepper Phytophthora blight. Benthiavalicarb applied at $100{\mu}g\;mL^{-1}$ 7 days before inoculation prevented pepper Phytophthora blight by 100%, even though the zoosporangiurn suspension of P. capsid adjusted to not only $5{\times}10^3$ zoosporangia $mL^{-1}$ but also $1{\times}10^5$ zoosporangia $mL^{-1}$ was inoculated by soil-drenching. Except for dimethomorph, the other fungicides showed an excellent control activity over 2 years from 2009 to 2010 in the field test. The control value of dimethomorph applied at $250{\mu}g\;mL^{-1}$ was low, 27.2% in 2009, but that of dimethomorph applied even at $125{\mu}g\;mL^{-1}$ was high, 89.5% in 2010. All the fungicides showed good inhibitory effect on the mycelial growth and the direct germination of zoosporangiurn, and controlled pepper Phytophthora blight preventively and curatively, can be used to establish the spray system for control1ing the pepper disease.

Biological Control of Sesame Soil-born Disease by Antifungal Microorganisms (참깨 토양전염성병(土壤傳染性病)의 생물학적방제(生物學的防除))

  • Shin, G.C.;Im, G.J.;Yu, S.H.;Park, J.S.
    • Korean journal of applied entomology
    • /
    • v.26 no.4 s.73
    • /
    • pp.229-237
    • /
    • 1987
  • In order to study the biological control of soil-borne disease of sesame, antagonistic isolates of Trichoderma , Bacillus sand streptomyces to Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphere soils of sesame plants and some other habitats. Out of the isolates of microorganisms collected a strain of Trichoderma viride was selected as a biological control agent for the study and its effect on the control of damping-off and the seedling growth of sesame was investigated. The results obtained are as follows: 26 percents of Bacillus spp. isolated from the rhizosphere soil of sesame plants showed antagonism to two pathogenic fungi. Important species were B. Subtilis and B. polymyxa. Streptomyces species isolated from the rhizosphere soils of sesame lysed the cell wall of hyphae and conidia of F. oxysporum and reduced conspicuously the formation of macroconidia and chlamydospores of the fungus. 84 percents of Trichoderma spp. isolated from the rhizosphere soil of sesame plants were antagonistic to F. oxysporum and 60 percents of the isolates were antagonistic to both F. oxysporum and R. solani. Trichoderma viride TV-192 selected from antagonistic isolates of Trichoderma spp. was highly antagonistic to F. oxysporum and soil treatment with the isolate reduced notably damping-off of sesame. T. viride TV-192 showed better growth in crushed rice straw, barley straw and sawdust media than F. oxysporum. Sawdust was selective for the growth of T. viride. Supplementation of wheat bran and mixtures of wheat bran and sawdust inoculated with T. viride TV-192 in the soil reduced remarkably damping-off of sesame by F. oxysporum but high density of the fungus TV-192 caused the inhibition of seed germination and seedling growth of sesame. Inhibitory effects of Trichoderma species on seed germination and seedling growth of sesame were different according to the isolates of the fungus. Normal sesame seedlings on the bed treated with the fungus showed better growth than not treated seedlings.

  • PDF

Identification and Chemotype Profiling of Fusarium Head Blight Disease in Triticale (국내 재배 트리티케일에 발생한 붉은곰팡이병의 다양성 및 독소화학형 분석)

  • Yang, Jung-Wook;Kim, Joo-Yeon;Lee, Mi-Rang;Kang, In-Jeong;Jeong, Jung-Hyun;Park, Myoung Ryoul;Ku, Ja-Hwan;Kim, Wook-Han
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • This study aimed to assess the disease incidence and distribution of toxigenic in Korean triticale. The pathogen of triticale that cause Fusarium head blight were isolated from five different triticale cultivars that cultivated in Suwon Korea at 2021 year. The 72 candidate were classified as a Fusarium asiaticum by morphology analysis and by ITS1, TEF-1α gene sequence analysis. And the results of pathogenicity with 72 isolates on seedling triticale, 71 isolates were showed disease symptom. Also, seven out of 71 Fusarium isolates were inoculated on the wheat, to test the pathogenicity on the different host. The results showed more low pathogenicity on the wheat than triticale. The results of analysis of toxin type with 72 isolates, 64.6% isolates were produced nivalenol type toxin and other 4.6% and 30.8% isolates were produce 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol, respectively. To select fungicide for control, the 72 Fusarium isolates were cultivated on the media that containing four kinds fungicide. The captan, hexaconazole, and difenoconazole·propiconazole treated Fusarium isolates were not showed resistance response against each fungicide. However, six isolates out of 72 isolates, showed resistance response to fludioxonil. This study is first report that F. asiaticum causes Fusarium head blight disease of triticale in Korea.

High density culture of Bacillus subtilisBSM320 in aqueous extract of composted spent mushroom substrate of Lentinula edodes and biological control of green mold disease (표고수확후배지 퇴비 물 추출물에서 Bacillus subtilis BSM 320의 고밀도 배양 및 표고 푸른곰팡이병의 생물학적 방제)

  • Ja-Yoon Kim;Se-Hyun Park;Seong-Joon Park;Ju-Hyeong Hwang Bo;Hee-Wan Kang
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.140-144
    • /
    • 2023
  • The objective of this study was to achieve biological control of green mold disease in Pyogo mushrooms using antagonistic microorganisms. Bacillus subtilis BSM320 cells inhibited mycelial growth by 48-60% against three Trichodermaisolates including T. hazianumisolated from the substrates of Lentinula edodes, showing their antifungal activity.The bacteria were cultured to a high density of 4.2 × 109±113.7 cfu/mlin aqueous extract of composted spent mushroom substrates of L. edodes containing 1% glucose and showed a higher growth rate than that observed when using the commercial medium, Luria-Bertani broth. The bacterial culture showed a 75% protective effect without damaging the mushroom fruiting bodies. These results suggest that B. subtilis BSM320culture is suitable for biological control of green mold disease during mushroom cultivation.

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Antimicrobial, antifungal effect and safety verification using BCOP assay of extracts from Coptis chinensis (황련(Coptis chinensis) 추출물의 항균, 항진균 효과와 BCOP 분석을 이용한 안전성 검증)

  • Kim, Eun-Hee;Jang, Young-Ah;Kim, Sol-Bi;Kim, Han-Hyuk;Lee, Jin-Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.297-304
    • /
    • 2018
  • Coptis chinensis is used in oriental medicine for soothing, anti-inflammation, antimicrobial and antipyretic properties, and its main ingredient berberine is known to have strong antibacterial activity. In this study, we investigated the anti-microbial effect of hot water extract of Coptis chinensis (CW) on skin related microorganism and the airborne microbe, the antifungal effects of fungi, which are frequently detected in residential environments. CW showed antibacterial effect against Propionibacterium acnes, Staphylococcus aureus and Staphylococcus epidermidis, against the airborne microbe, which was collected in four different places. At the concentration of 100 mg/mL, the antimicrobial activity continued for 42 days, showed heat stability without change in the antimicrobial activity even after heat treatment. The MIC and MBC of CW against S. aureus was 0.03, 0.05 mg/mL, against S. epidermidis was 0.50, 0.75 mg/mL and against P. acne was 0.10, 0.15 mg/mL. As a result of measuring the MIC of four kinds of fungi with high detection frequency in the surrounding environment, Gliocladium virens was 65 mg/mL by determined as MIC which can inhibit one hundred percent of mycelial growth. The concentration 90 mg/mL was determined as MIC against Aureobasidium pullulans and 100 mg/mL against Penicilium pinophilum and Chaetomium globosum. CW was considered a safe extract that showed no irritation even in the ocular mucous membrane irritation evaluation test, a patch test. Therefore, these results suggest that Coptis chinensis has antimicrobial, antifungal and safety on human body and can be applied to the development of materials for cosmetic and residential environment industries.