• 제목/요약/키워드: 규칙 기반 방법

검색결과 1,168건 처리시간 0.035초

Neural Feature Association Rule을 이용한 효모 단백질-단백질 상호작용의 예측 (Prediction of Yeast Protein-Protein Interactions by Neural Feature Association Rule)

  • 엄재홍;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.277-279
    • /
    • 2005
  • 단백질들은 서로 다른 단백질들과 상호작용하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질들 간의 상호작용 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이터가 산출된 후게놈시대(post-genomic era)에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모에 대해 공개되어있는 단백질 상호작용 데이터들에서 속성들 간의 연관규칙 학습을 통해 잠재적 단백질 상호작용들을 예측하기 위한 연관규칙 기반의 상호작용 예측 방법을 제시한다. 단백질들 간의 상호작용 예측을 위해 고려되는 각 단백질의 다수의 속성차원은 정보이론 기반의 속성선택 알고리즘을 이용하여 효율적으로 줄이며 상호작용의 속성집합을 이용하여 신경망을 훈련시키고 이렇게 훈련된 신경망에서 속성들 간의 연관규칙을 디코딩하여 연관규칙 기반의 상호작용 예측에 활용한다. 연관속성 발굴을 통한 상호작용 예측을 위한 마이닝 방법으로는 연관규칙 발견 알고리즘을 사용하였으며 예측 정확도를 높이기 위하여 신경망 예측 모델의 학습 결과를 디코딩한 규칙들이 추가적으로 사용하였다. 논문에서 제안한 방법을 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 평균 약 $94.5\%$의 예측 정확도를 보였다.

  • PDF

고차원 행동구현을 위한 행동 네트워크와 규칙기반 결합방식의 비교 (A Comparison of Behavior Network and Rule-based Integration Method for Higher-level Behavior Implementation)

  • 김경중;조성배
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.551-554
    • /
    • 2001
  • 분산 인공지능 분야에서는 여러 개의 기본 객체들이 상호작용을 통해 원하는 작업을 수행하는데, 그 한 예로 행동기반 이동로봇 제어 시스템을 들 수 있다. 이것은 여러 개의 기본 행동 모듈을 개발한 후, 적절한 조정방법을 사용하여 어려운 문제를 해결하며, 행동 네트워크는 행동 모듈들간의 협력과 억제를 모델링 하여 주어진 작업을 달성하도록 행동들의 실행순서를 조정하는 방법중의 하나이다. 정적으로 행동을 선택하는 규칙기반 결합 방법과는 달리 목표에 기반 하여 행동 네트워크는 다양한 행동들의 실행순서를 동적으로 선택한다는 장점이 있다. 본 논문에서는 진화 방식으로 설계된 기본 행동 모듈을 행동 네트워크와 규칙기반 방법으로 선택하는 실험을 수행하며, 그 결과 행동 네트워크가 변화하는 환경에서도 좋은 성능을 보인다는 사실을 확인할 수 있었다.

  • PDF

규칙 및 SVM 기반 알고리즘에 의한 심전도 신호의 리듬 분류 (Rhythm Classification of ECG Signal by Rule and SVM Based Algorithm)

  • 김성완;김대환
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권9호
    • /
    • pp.43-51
    • /
    • 2013
  • 신뢰성 있는 부정맥 진단을 위해서는 리듬 구간 및 심박 단위의 종합적인 분석을 통하여 심전도 신호에 대한 분류 결과가 제시되어야 한다. 본 논문에서는 심전도 신호의 특징점에 기반하여 규칙기반 분류를 이용한 일정 구간의 리듬 분석을 수행하고 SVM기반 분류를 이용한 심박 단위의 리듬분석을 첨가하였다. 규칙기반 분류에서는 리듬 구간의 특징에 대하여 임상 자료로부터 도출된 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, SVM기반 분류에서는 심박 단위의 특징에 대하여 미리 학습된 다중 SVM 분류기를 이용하여 단조 리듬 및 주요 비정상 심박을 분류하도록 한다. MIT-BIH 부정맥 데이터베이스를 이용한 실험을 통하여 11가지 리듬 유형에 대하여 규칙기반 방법만을 적용하였을 경우 68.52%, 규칙기반과 SVM기반의 융합 방법을 적용하였을 경우 87.04%의 분류 성능을 각각 보였다. SVM기반 방법으로 단조 리듬과 배열 리듬에 대한 오분류 개선을 통하여 분류 성능에서 19% 정도가 향상됨을 확인하였다.

한국어 상호참조해결을 위한 BERT 기반 데이터 증강 기법 (BERT-based Data Augmentation Techniques for Korean Coreference Resolution)

  • 김기훈;이창기;류지희;임준호
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.249-253
    • /
    • 2020
  • 상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.

  • PDF

엔트로피 분포를 이용한 규칙기반 분류분석 연구 (Rule-Based Classification Analysis Using Entropy Distribution)

  • 이정진;박해기
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.527-540
    • /
    • 2010
  • 규칙기반 분류분석(rule-based classification analysis)은 직관적인 이해가 쉽고 알고리즘이 복잡하지 않아 최근 대용량 데이터마이닝에 많이 이용되는 기법이다. 하지만 현재의 규칙기반 분석은 여러 개의 규칙들을 찾은후 이 규칙들을 단순히 다수결이나 또는 중요도의 가중 합으로서 새로운 데이터를 분류한다. 본 연구에서는 다항분포를 이용한 이항데이터의 분류분석 기법을 규칙 조합방법에 응용하고자한다. 다향분포의 추정을 위해서는 변형된 반복 비율 적합(iterative proportional fitting; IPF) 알고리즘을 이용하여 최대 엔트로피 분포(entropy distribution)를 찾는다. 시뮬레이션 실험 결과 이 방법은 두 집단의 데이터가 서로 유사한 경우 어느 정도 의미 있는 분류 결과를 보여주였다.

변형 규칙 기반 한국어 품사 태거의 개선 (Improvement of Transformation Rule-Based Korean Part-Of-Speech Tagger)

  • 임희석;김진동;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1996년도 제8회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.216-221
    • /
    • 1996
  • 변형 규칙 기반 품사 태거는 태깅 규칙을 코퍼스로부터 자동 학습할 수 있고, 견고하며 태깅 결과를 이해하고 분석하기가 쉽다는 장점을 갖는다. 이에 최근 한국어 특성을 고려한 변형 규칙 기반 한국어 품사 태거가 개발되었다. 하지만 이 시스템은 오류 어절의 어휘 정보를 사용하지 않으므로 수정 가능 오류에 대한 변형 규칙이 제대로 학습되지 못하며, 변형 규칙 적용 과정에 새로운 오류를 발생시킨다는 문제점이 있다. 이에 본 논문은 오류 어절의 어휘 정보를 참조할 수 있는 세부변형 규칙 추출을 이용한 변형 규칙 기반 한국어 품사 태거의 개선 방안을 제안한다. 어휘 정보를 참조할 수 있는 세부 변형 규칙의 형태는 특정 문맥 C에서 어절 W의 어절 태그 ${\alpha}$를 어절 태그 ${\beta}$로 변형한다와 같다. 제안된 방법은 약 10만 어절 크기의 학습 코퍼스에서 57개의 세부 규칙을 학습하였고, 2만 어절 크기의 실험코퍼스에 적용한 결과 95.6%의 정확도를 보임으로써 기존의 변형 규칙 기반 품사 태거의 정확도를 약 15.4% 향상시켰다.

  • PDF

신경망에 기반한 개인화 기술 (A Personalization Technology Based on Neural Networks)

  • 김종수;도영아;류정우;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.28-30
    • /
    • 2001
  • 현 인터넷상에서 취향에 맞는 항목(상품) 정보를 사용자에게 추천해 주는 개인화 기술은 대부분 특정 사용자와 유사한 선호도를 갖는 다른 사용자들의 특정 항목에 대한 선호도를 바탕으로 항목의 선호도를 추정하는 협력적 추천 기술을 적용하고 있다. 이중 최근접 이웃 방법은 적용하기가 용이한 반면 항목간의 가중치를 고려하지 못함으로써 추천의 정확도가 크게 떨어지는 문제점이 있다. 연관규칙 방법은 다른 항목에 대한 선호도 자료로부터 데이터 마이닝 기법을 적용하여 항목 선호에 대한 연관규칙을 추출하고 그 규칙을 사용하여 어떤 항목의 선호도를 추정한다. 따라서 항목들 간의 중요도가 연관규칙의 지지도나 신뢰도 등으로 나타난다고 할 수 있으나, 단순히 항목들간의 연관관계 즉 표면적인 연관관계에 의하여 선호도를 결정함으로써 항목들간의 어떤 내용적인 공통성 또는 어떤 상위개념에 의한 선호도가 고려되지 않음으로써 역시 정확도가 떨어지는 문제점이 있다. 본 논문에서는 추천의 정확도를 향상시키기 위한 신경망 추천 방법에 대해 분석하고, 내용기반 추천과 협력적 추천을 병합한 신경망 추천 방법을 제안한다. 또한, 다른 협력적 추천 방법과의 비교를 통하여 본 추천 방법의 장점과 성능의 우수함을 보인다.

  • PDF

규칙기반 표의 추이 방법을 이용한 퍼지제어기의 성능개선 (The Performance Improvement of Fuzzy Controller using the Shifting Method of Rule Base Table)

  • 차문철;이철우;김흥수
    • 전자공학회논문지CI
    • /
    • 제42권6호
    • /
    • pp.55-62
    • /
    • 2005
  • 퍼지논리제어기가 이상적인 제어효과를 나타내게 할려면 적합한 규칙집합을 사용하는 것이 아주 중요하다. 퍼지논리제어기의 언어구조는 가상언어정책을 초기 규칙기반으로 사용하는 것을 허용한다. 만약 설계단계에서 적당한 규칙들을 일정하게 잘 조합시킨다면 제어기의 성능을 훨씬 더 향상시킬 수 있을 것이다. 본 논문에서 퍼지제어기 성능을 개선하기 위한 규칙기반 표에서의 원소추이방법을 제안하였다. 제안된 방법은 에러가 증가되면 시스템을 조절하는 출력의 제어효과가 증대될 것이고 반대로 에러가 감소되면 그에 따른 출력의 제어효과가 감소할 것이라는 원리를 기반으로 하였다. 모의실험결과에 의해 제안된 방법은 퍼지제어 규칙기반과 퍼지논리제어기의 성능을 향상시키기 위한 아주 효과적인 방법임을 알 수 있다.

BPEL 규칙 모델링을 위한 규칙 기반 BPEL 시스템 설계와 구현 (Design and Implementation of Rule-based BPEL System for BPEL Rule Modeling)

  • 곽동규;최재영
    • 전기전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.332-338
    • /
    • 2013
  • BPEL은 작업의 순서를 기술하는 워크플로우의 표준으로서, 웹 서비스를 기반으로 하는 분산 컴퓨팅 환경의 많은 응용 분야에 적용되고 있다. BPEL의 요구사항이 복잡해지면서 규칙기반의 엔진이 요구되고 있다. 본 논문은 BPEL 문법을 그대로 이용하면서 규칙을 추가하기 위해 규칙을 기술할 수 있는 R4BPEL 문서를 제안하고 규칙 웹 서비스를 이용하여 BPEL에 규칙을 사용할 수 있도록 제안한다. BPEL 엔진에 규칙 기능을 추가하기 위해서는 BPEL 엔진을 새롭게 개발하거나 수정해야 하는데, 이 방법은 많은 비용이 많이 필요하다. 제안하는 방법은 기존의 범용 BPEL 시스템에 규칙 웹 서비스와 R4BPEL 문서 분석기를 추가하여 손쉽게 규칙 기반의 BPEL 환경을 구성할 수 있다. 본 논문에서는 제안하는 시스템에서의 BPEL 문서와 기존 방식의 BPEL 문서를 비교하여 제안하는 시스템의 규칙 기반 BPEL 문서가 단순함을 보인다.

규칙기반 웹 서버 장애 진단 추론 기법 (Rule-based Reasoning Scheme for Web Server Fault Diagnosis)

  • 윤정미;한정수;정진욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 제13회 춘계학술대회 및 임시총회 학술발표 논문집
    • /
    • pp.406-409
    • /
    • 2000
  • 이 논문에서는 웹 서버에 발생할 수 있는 장애 항목들을 정의하고, 발생한 장애를 자동적으로 진단하고 이를 검출하기 위한 방법을 규칙기반 추론기법을 사용하여 제안하였다. 즉, 웹 서버 관리에서 발생할 수 있는 장애 항목을 정의하고, 장애를 진단하기 위한 규칙을 제안하였는데, 장애 항목으로는 프로세스 장애, 서버 과부하, 인터페이스 장애, 구성 및 성능 장애를 정의하였으며, 각 장애 항목을 진단하기 위한 지식을 활성 네트워크기법을 적용하여 표현하고, 이를 시스템 레벨 장애 진단 생성규칙과 서비스 레벨 장애 진단 생성규칙으로 정형화하였다. 그리고 제안한 장애 진단규칙의 타당성을 증명하기 위한 장애 환경 구성을 구성하고, 각 장애 환경에 대한 생성규칙 적용과정을 실험을 통하여 제시하였다. 이 논문에서는 기하 급수적으로 증가하는 웹 서버의 장애를 관리하기 위한 메커니즘 제안함으로써 웹 서버 관리에 소요되는 관리자의 노력을 최소화할 수 있는 지능적인 장애 관리를 위한 방법론을 제시하고자 한다.

  • PDF