• Title/Summary/Keyword: 규칙기반 방법

Search Result 1,170, Processing Time 0.026 seconds

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Performance Comparison of Clustering using Discritization Algorithm (이산화 알고리즘을 이용한 계층적 클러스터링의 실험적 성능 평가)

  • Won, Jae Kang;Lee, Jeong Chan;Jung, Yong Gyu;Lee, Young Ho
    • Journal of Service Research and Studies
    • /
    • v.3 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • Datamining from the large data in the form of various techniques for obtaining information have been developed. In recent years one of the most sought areas of pattern recognition and machine learning method is created with most of existing learning algorithms based on categorical attributes to a rule or decision model. However, the real-world data, it may consist of numeric attributes in many cases. In addition it contains attributes with numerical values to the normal categorical attribute. In this case, therefore, it is required processes in order to use the data to learn an appropriate value for the type attribute. In this paper, the domain of the numeric attributes are divided into several segments using learning algorithm techniques of discritization. It is described Clustering with other data mining techniques. Large amount of first cluster with characteristics is similar records from the database into smaller groups that split multiple given finite patterns in the pattern space. It is close to each other of a set of patterns that together make up a bunch. Among the set without specifying a particular category in a given data by extracting a pattern. It will be described similar grouping of data clustering technique to classify the data.

  • PDF

Energy-Efficient Data-Aware Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 에너지 효율적인 데이터 인지 라우팅 프로토콜)

  • Lee, Sung-Hyup;Kum, Dong-Won;Lee, Kang-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • In many applications of wireless sensor networks, sensed data can be classified either normal or urgent data according to its time criticalness. Normal data such as periodic monitoring is loss and delay tolerant, but urgent data such as fire alarm is time critical and should be transferred to a sink with reliable. In this paper, by exploiting these data characteristics, we propose a novel energy-efficient data-aware routing protocol for wireless sensor networks, which provides a high reliability for urgent data and energy efficiency for normal data. In the proposed scheme, in order to enhance network survivability and reliability for urgent data, each sensor node forwards only urgent data when its residual battery level is below than a threshold. Also, the proposed scheme uses different data delivery mechanisms depending on the data type. The normal data is delivered to the sink using a single-path-based data forwarding mechanism to improve the energy-efficiency. Meanwhile, the urgent data is transmitted to the sink using a directional flooding mechanism to guarantee high reliability. Simulation results demonstrate that the proposed scheme could significantly improve the network lifetime, along with high reliability for urgent data delivery.

An Efficient Spatial Join Method Using DOT Index (DOT 색인을 이용한 효율적인 공간 조인 기법)

  • Back, Hyun;Yoon, Jee-Hee;Won, Jung-Im;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.420-436
    • /
    • 2007
  • The choice of an effective indexing method is crucial to guarantee the performance of the spatial join operator which is heavily used in geographical information systems. The $R^*$-tree based method is renowned as one of the most representative indexing methods. In this paper, we propose an efficient spatial join technique based on the DOT(Double Transformation) index, and compare it with the spatial Join technique based on the $R^*$-tree index. The DOT index transforms the MBR of an spatial object into a single numeric value using a space filling curve, and builds the $B^+$-tree from a set of numeric values transformed as such. The DOT index is possible to be employed as a primary index for spatial objects. The proposed spatial join technique exploits the regularities in the moving patterns of space filling curves to divide a query region into a set of maximal sub-regions within which space filling curves traverse without interruption. Such division reduces the number of spatial transformations required to perform the spatial join and thus improves the performance of join processing. The experiments with the data sets of various distributions and sizes revealed that the proposed join technique is up to three times faster than the spatial join method based on the $R^*$-tree index.

Learning Method for Regression Model by Analysis of Relationship Between Input and Output Data with Periodicity (주기성을 갖는 입출력 데이터의 연관성 분석을 통한 회귀 모델 학습 방법)

  • Kim, Hye-Jin;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.7
    • /
    • pp.299-306
    • /
    • 2022
  • In recent, sensors embedded in robots, equipment, and circuits have become common, and research for diagnosing device failures by learning measured sensor data is being actively conducted. This failure diagnosis study is divided into a classification model for predicting failure situations or types and a regression model for numerically predicting failure conditions. In the case of a classification model, it simply checks the presence or absence of a failure or defect (Class), whereas a regression model has a higher learning difficulty because it has to predict one value among countless numbers. So, the reason that regression modeling is more difficult is that there are many irregular situations in which it is difficult to determine one output from a similar input when predicting by matching input and output. Therefore, in this paper, we focus on input and output data with periodicity, analyze the input/output relationship, and secure regularity between input and output data by performing sliding window-based input data patterning. In order to apply the proposed method, in this study, current and temperature data with periodicity were collected from MMC(Modular Multilevel Converter) circuit system and learning was carried out using ANN. As a result of the experiment, it was confirmed that when a window of 2% or more of one cycle was applied, performance of 97% or more of fit could be secured.

Study on the Evaluation of Ship Collision Risk based on the Dempster-Shafer Theory (Dempster-Shafer 이론 기반의 선박충돌위험성 평가에 관한 연구)

  • Jinwan Park;Jung Sik Jeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.462-469
    • /
    • 2023
  • In this study, we propose a method for evaluating the risk of collision between ships to support determination on the risk of collision in a situation in which ships encounter each other and to prevent collision accidents. Because several uncertainties are involved in the navigation of a ship, must be considered when evaluating the risk of collision. We apply the Dempster-Shafer theory to manage this uncertainty and evaluate the collision risk of each target vessel in real time. The distance at the closest point approach (DCPA), time to the closest point approach (TCPA), distance from another vessel, relative bearing, and velocity ratio are used as evaluation factors for ship collision risk. The basic probability assignments (BPAs) calculated by membership functions for each evaluation factor are fused through the combination rule of the Dempster-Shafer theory. As a result of the experiment using automatic identification system (AIS) data collected in situations where ships actually encounter each other, the suitability of evaluation was verified. By evaluating the risk of collision in real time in encounter situations between ships, collision accidents caused by human errora can be prevented. This is expected to be used for vessel traffic service systems and collision avoidance systems for autonomous ships.

Discovering abstract structure of unmet needs and hidden needs in familiar use environment - Analysis of Smartphone users' behavior data (일상적 사용 환경에서의 잠재니즈, 은폐니즈의 추상구조 발견 - 스마트폰 사용자의 행동데이터 수집 및 해석)

  • Shin, Sung Won;Yoo, Seung Hun
    • Design Convergence Study
    • /
    • v.16 no.6
    • /
    • pp.169-184
    • /
    • 2017
  • There is a lot of needs that are not expressed as much as the expressed needs in familiar products and services that are used in daily life such as a smartphone. Finding the 'Inconveniences in familiar use' make it possible to create opportunities for value expanding in the existing products and service area. There are a lot of related works, which have studied the definition of hidden needs and the methods to find it. But, they are making it difficult to address the hidden needs in the cases of familiar use due to focus on the new product or service developing typically. In this study, we try to redefine the hidden needs in the daily familiarity and approach it in the new way to find out. Because of the users' unability to express what they want and the complexity of needs which can not be explained clearly, we can not approach it as the quantitative issue. For this reason, the basic data type selected as the user behavior data excluding all description is the screen-shot of the smartphone. We try to apply the integrated rules and patterns to the individual data using the qualitative coding techniques to overcome the limitations of qualitative analysis based on unstructured data. From this process, We can not only extract meaningful clues which can make to understand the hidden needs but also identify the possibility as a way to discover hidden needs through the review of relevance to actual market trends. The process of finding hidden needs is not easy to systemize in itself, but we expect the possibility to be conducted a reference frame for finding hidden needs of other further studies.

A Template-based Interactive University Timetabling Support System (템플릿 기반의 상호대화형 전공강의시간표 작성지원시스템)

  • Chang, Yong-Sik;Jeong, Ye-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.121-145
    • /
    • 2010
  • University timetabling depending on the educational environments of universities is an NP-hard problem that the amount of computation required to find solutions increases exponentially with the problem size. For many years, there have been lots of studies on university timetabling from the necessity of automatic timetable generation for students' convenience and effective lesson, and for the effective allocation of subjects, lecturers, and classrooms. Timetables are classified into a course timetable and an examination timetable. This study focuses on the former. In general, a course timetable for liberal arts is scheduled by the office of academic affairs and a course timetable for major subjects is scheduled by each department of a university. We found several problems from the analysis of current course timetabling in departments. First, it is time-consuming and inefficient for each department to do the routine and repetitive timetabling work manually. Second, many classes are concentrated into several time slots in a timetable. This tendency decreases the effectiveness of students' classes. Third, several major subjects might overlap some required subjects in liberal arts at the same time slots in the timetable. In this case, it is required that students should choose only one from the overlapped subjects. Fourth, many subjects are lectured by same lecturers every year and most of lecturers prefer the same time slots for the subjects compared with last year. This means that it will be helpful if departments reuse the previous timetables. To solve such problems and support the effective course timetabling in each department, this study proposes a university timetabling support system based on two phases. In the first phase, each department generates a timetable template from the most similar timetable case, which is based on case-based reasoning. In the second phase, the department schedules a timetable with the help of interactive user interface under the timetabling criteria, which is based on rule-based approach. This study provides the illustrations of Hanshin University. We classified timetabling criteria into intrinsic and extrinsic criteria. In intrinsic criteria, there are three criteria related to lecturer, class, and classroom which are all hard constraints. In extrinsic criteria, there are four criteria related to 'the numbers of lesson hours' by the lecturer, 'prohibition of lecture allocation to specific day-hours' for committee members, 'the number of subjects in the same day-hour,' and 'the use of common classrooms.' In 'the numbers of lesson hours' by the lecturer, there are three kinds of criteria : 'minimum number of lesson hours per week,' 'maximum number of lesson hours per week,' 'maximum number of lesson hours per day.' Extrinsic criteria are also all hard constraints except for 'minimum number of lesson hours per week' considered as a soft constraint. In addition, we proposed two indices for measuring similarities between subjects of current semester and subjects of the previous timetables, and for evaluating distribution degrees of a scheduled timetable. Similarity is measured by comparison of two attributes-subject name and its lecturer-between current semester and a previous semester. The index of distribution degree, based on information entropy, indicates a distribution of subjects in the timetable. To show this study's viability, we implemented a prototype system and performed experiments with the real data of Hanshin University. Average similarity from the most similar cases of all departments was estimated as 41.72%. It means that a timetable template generated from the most similar case will be helpful. Through sensitivity analysis, the result shows that distribution degree will increase if we set 'the number of subjects in the same day-hour' to more than 90%.

Design of Omok AI using Genetic Algorithm and Game Trees and Their Parallel Processing on the GPU (유전 알고리즘과 게임 트리를 병합한 오목 인공지능 설계 및 GPU 기반 병렬 처리 기법)

  • Ahn, Il-Jun;Park, In-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.66-75
    • /
    • 2010
  • This paper proposes an efficient method for design and implementation of the artificial intelligence (AI) of 'omok' game on the GPU. The proposed AI is designed on a cooperative structure using min-max game tree and genetic algorithm. Since the evaluation function needs intensive computation but is independently performed on a lot of candidates in the solution space, it is computed on the GPU in a massive parallel way. The implementation on NVIDIA CUDA and the experimental results show that it outperforms significantly over the CPU, in which parallel game tree and genetic algorithm on the GPU runs more than 400 times and 300 times faster than on the CPU. In the proposed cooperative AI, selective search using genetic algorithm is performed subsequently after the full search using game tree to search the solution space more efficiently as well as to avoid the thread overflow. Experimental results show that the proposed algorithm enhances the AI significantly and makes it run within the time limit given by the game's rule.

Design and Implementation of Integrated E-Coaching system Based on Synchronous and Asynchronous (동기/비동기 기반의 통합 E-코칭 시스템 설계 및 구현)

  • Kim, DoYeon;Kim, DoHyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • Until now, face to face coaching has been applied almost for completing the goal in various field. Face to face coaching is difficult always to reach each other anywhere, anytime due to the availability of internet and mobile devices. Recently, e-coaching is attempted to expend. But current e-coaching is supporting the secondary role for face to face coaching. E-coaching system has many benefits to use advancement technologies in internet. Therefore, the development of e-coaching system based on horizontal relationships between coach and coachee needs to communication anytime and anywhere in Internet. Usually previous online coaching systems have four types of interactions i.e. electronic mail, video chat, text chat, phone call. Most of the e-coaching approaches are easy to access and provide communication synchronous; video chat is an excellent visibility, whereas e-mail is asynchronous and document-centric. In this paper, we design and implement the integration e-coaching system based on synchronous and asynchronous. This system provides the asynchronous coaching offered by way of e-mail, and the synchronous coaching used P2P (Peer to Peer) video chat and text group chat. This system allows simultaneously asynchronous and synchronous coaching, and supports individual and group communication for periodical or informal coaching.