• Title/Summary/Keyword: 규칙기반 모델

Search Result 610, Processing Time 0.026 seconds

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.

  • PDF

A Role-Based Access Control Model ensuring Confidentiality and Integrity (비밀성과 무결성을 보장하는 역할기반 접근제어모델)

  • Byun Chang-Woo;Park Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.3
    • /
    • pp.13-29
    • /
    • 2005
  • An important characteristic of role-based access control model(RBAC) is that by itself it is policy neutral. This means RBAC articulates security policy without embodying particular security policy. Because of this reason, there are several researches to configure RBAC to enforce traditional mandatory access control(MAC) policy and discretionary access control(DAC) policy. Specifically, to simulate MAC using RBAC several researches configure a few RBAC components(user, role, role-hierarchy, user-role assignment and session) for keeping no-read-up rule and no-write-down rule ensuring one-direction information flow from low security level to high security level. We show these researches does not ensure confidentiality. In addition, we show the fact that these researches overlook violation of integrity due to some constraints of keeping confidentiality. In this paper we propose a RBAC model satisfying both confidentiality and integrity. We reexamine a few RBAC components and constructs additional constraints.

Korean Morphological Analyzer and POS Tagger Just Using Finite-State Transducers (유한상태변환기만을 이용한 한국어 형태소 분석 및 품사 태깅)

  • Park, Won-Byeong;Kim, Jae-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • 이 논문은 유한상태변환기만을 이용하여 한국어 형태소 분석 및 품사 태깅 시스템을 제안한다. 기존의 한국어 형태소 분석 시스템들은 규칙기반 형태소 분석기가 주를 이루고 한국어 품사 태깅 시스템은 은닉마르코프 모델 기반 품사 태깅이 주를 이루었다. 한국어 형태소 분석의 경우 유한상태변환기를 이용한 경우도 있었으나, 이 방법은 변환기를 작성하기 위한 규칙을 수작업으로 구축해야 하며, 그 규칙에 따라서 사전이 작성되어야 한다. 이 논문에서는 품사 태깅 말뭉치를 이용해서 유한상태변환기에서 필요한 모든 변환 규칙을 자동으로 추출한다. 이런 방법으로 네 종류의 변환기, 즉, 자소분리변환기, 단어분리변환기, 단어형성변환기, 품사결정변환기를 자동으로 구축한다. 구축된 변환기들은 결합연산(composition operation)을 이용하여 하나의 유한상태변환기를 구성하여 한국어 형태소 분석과 동시에 한국어 품사 태깅을 수행한다. 이 방법은 하나의 유한상태변환기만을 이용하기 때문에 복잡도는 선형시간(linear complexity)을 가지면, 형태소 분석기와 품사 태깅 시스템을 매우 짧은 시간 내에 개발 할 수 있었다.

  • PDF

Markov Models based Classification of Fingerprint Structural Features (마코프 모텔 기반 지문의 구조적 특징 분류)

  • Jung Hye-Wuk;Won Jong-Jin;Kim Moon-Hyun
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.33-38
    • /
    • 2005
  • 지문분류는 대규모 인증시스템에 사용되는 지문 데이터 베이스를 종류별로 인덱싱 하거나 인식 시스템에 다양하게 쓰이는 매우 중요한 방법이다. 지문은 일반적으로 융선의 전체모양 등 전역적인 특징을 기반으로 분류하며, 분류방법에는 규칙기반 접근, 구문론적 접근, 구조적 접근, 통계적 접근, 신경망 기반 접근 등이 있다. 본 논문에서는 지문의 구조적인 특징을 바탕으로 관찰되는 특징의 상태가 매순간 변화하는 확률론적 정보추출 방식인 마코프 모델을 적용한 지문분류 방법을 제안한다. 지문 이미지의 전처리 과정을 거친 후 각 클래스 분류를 위해 대표 융선을 찾아 방향정보를 추출하고 이를 이용하여 5가지 클래스로 분류될 수 있도록 설계하였다. 좋은품질(Good)과 나쁜품질(Poor)의 데이터를 포함한 훈련집합을 사용하여 각 클래스별로 학습된 마코프 모델은 임의의 지문이미지 분류시 높은 분류율을 보였다. 또한 기존의 구조적 접근방법에 비하여 다양한 품질의 지문이미지의 방향성 정보를 이용한 확률론적 방법이기 때문에 예외적인 지문이미지 분류시 잘 적용될 수 있다.

  • PDF

RBR Based Network Configuration Fault Management Algorithms using Agent Collaboration (에이전트들 간의 협력을 통한 RBR 기반의 네트워크 구성 장애 관리 알고리즘)

  • Jo, Gwang-Jong;An, Seong-Jin;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.497-504
    • /
    • 2002
  • This paper proposes fault diagnosis and correction algorithms using agent collaboration, and a management model for managing network configuration faults. This management model is composed of three processes-fault detection, fault diagnosis and fault correction. Each process, based on RBR, operates on using rules which are consisted in Rule-based Knowledge Database. Proposed algorithm selves the complex fault problem that a system could not work out by itself, using agent collaboration. And the algorithm does efficiently diagnose and correct network configuration faults in abnormal network states.

Wavelet-Based Fuzzy System Modeling Using Genetic Algorithm (유전 알고리듬을 이용한 웨이브렛 기반 퍼지 시스템 모델링)

  • 이승준;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.569-574
    • /
    • 2000
  • 본 논문에서는 유전 알고리듬을 이용한 웨이브렛 기반 퍼지 시스템 모델링에 대한 새로운 방법을 제안한다. 유전 알고리듬을 이용하여 웨이브렛 변환의 계수를 동정한 후 웨이브렛 변환과 등가관계에 있는 퍼지 시스템 모델을 형성한다. 웨이브렛 변환의 장점인 에너지 압축에 의해 적은 수의 계수를 이용하여도 정확한 모델을 획득할 수 있고 이는 적은 수의 규칙으로 정확한 퍼지 시스템 모델을 구성할 수 있다는 것을 의미한다. 또한 급격한 변화를 갖는 함수를 잘 나타낼 수 있다는 웨이브렛 변환의 장점에 의하여 기존의 퍼지 모델링으로는 좋은 모델을 획득할 수 없었던 문제를 해결하였다. 제안된 퍼지 모델의 우수성을 비선형성이 큰 함수를 모델링하고 이전의 연구와 비교함으로써 입증한다.

  • PDF

Sentence Compression based on Sentence Scoring Reflecting Linguistic Information (언어 정보를 반영한 문장 점수 측정 기반의 문장 압축)

  • Lee, Jun-Beom;Kim, So-Eon;Park, Seong-Bae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.389-392
    • /
    • 2021
  • 문장 압축은 원본 문장의 중요한 의미를 보존하는 짧은 길이의 압축 문장을 생성하는 자연어처리 태스크이다. 문장 압축은 사용자가 텍스트로부터 필요한 정보를 빠르게 획득할 수 있도록 도울 수 있어 활발히 연구되고 있지만, 기존 연구들은 사람이 직접 정의한 압축 규칙이 필요하거나, 모델 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 사전 학습된 언어 모델을 통한 perplexity 기반의 문장 점수 측정을 통해 문장을 압축하여 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않은 연구 또한 존재하지만, 문장 점수 측정에 문장에 속한 단어들의 의미적 중요도를 반영하지 못하여 중요한 단어가 삭제되는 문제점이 존재한다. 본 논문은 언어 정보 중 품사 정보, 의존관계 정보, 개체명 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 측정에 반영하는 방법을 제안한다. 또한 제안한 문장 점수 측정 방법을 활용하였을 때 문장 점수 측정 기반 문장 압축 모델의 문장 압축 성능이 향상됨을 확인하였으며, 이를 통해 문장에 속한 단어의 언어 정보를 문장 점수 측정에 반영하는 것이 의미적으로 적절한 압축 문장을 생성하는 데 도움이 될 수 있음을 보였다.

자율운항선박의 충돌회피모델에 적용되는 COLREGs 항법 해석의 모호성 식별에 관한 연구

  • 박득진;박성호;김종관;박상아
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.82-83
    • /
    • 2022
  • 국제해상충돌예방규칙(COLREGs)에 관한 협약은 해상에서 발생하는 충돌사고를 방지하기 위한 규칙으로 구성되어 있으며, Seaman(선원)의 Qualitative Rule(질적 규칙)과 Ordinary practice(통상적인 관행)에 기초하고 있다. MASS의 출현으로 인하여 질적 규칙과 관행으로 인하여 COLREG를 기반으로 한 항법 해석의 기준의 다름이 발생하였고, 기준의 차이로 인해 충돌 상황에 대한 항법 해석의 모호성문제가 발생하고 있다. 따라서 본 연구는 COLREG의 항법 해석의 모호성을 규명하여 유인과 무인 사이의 충돌회피 상황을 명확히 하는 것을 목적으로 한다. COLREG를 기반으로 한 충돌 상황의 모호성을 식별하기 위해 실제 항해사를 대상으로 충돌 회피 상황에 대한 인식을 조사하고, 정면 및 횡단, 횡단 및 추월 상황을 기반으로 조사 결과를 분석하였다. 분석 결과, 응답자들은 008°에서 마주치는 선박에 대해서 정면 또는 횡단 상황 항법 규칙을 적용해야 하는지, 160°에서 다가오는 선박에 대해서 추월 또는 횡단 상황을 적용해야 하는지에 대해 확신하지 못하는 것으로 나타났다. 이러한 결과는 이러한 모호성의 증가와 함께 충돌회피상황의 수동적 행동보다 능동적인 행동을 취함으로써 선원에 의한 충돌위험을 회피하려는 경향이 더 강해짐을 나타낸다.

  • PDF

Heterogeneous Lifelog Mining Model in Health Big-data Platform (헬스 빅데이터 플랫폼에서 이기종 라이프로그 마이닝 모델)

  • Kang, JI-Soo;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.75-80
    • /
    • 2018
  • In this paper, we propose heterogeneous lifelog mining model in health big-data platform. It is an ontology-based mining model for collecting user's lifelog in real-time and providing healthcare services. The proposed method distributes heterogeneous lifelog data and processes it in real time in a cloud computing environment. The knowledge base is reconstructed by an upper ontology method suitable for the environment constructed based on the heterogeneous ontology. The restructured knowledge base generates inference rules using Jena 4.0 inference engines, and provides real-time healthcare services by rule-based inference methods. Lifelog mining constructs an analysis of hidden relationships and a predictive model for time-series bio-signal. This enables real-time healthcare services that realize preventive health services to detect changes in the users' bio-signal by exploring negative or positive correlations that are not included in the relationships or inference rules. The performance evaluation shows that the proposed heterogeneous lifelog mining model method is superior to other models with an accuracy of 0.734, a precision of 0.752.

A Design of Metadata Registry Database based on Object-Relational Transformation Methodology (객체-관계 변환 방법론 기반 메타데이터 레지스트리 데이터베이스 설계)

  • Cha, Sooyoung;Lee, Sukhoon;Jeong, Dongwon;Baik, Doo-Kwon
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1147-1161
    • /
    • 2015
  • The ISO/IEC 11179 Metadata registry (MDR) is an international standard that was developed to register and share metadata. ISO/IEC 11179 represents an MDR as a metamodel that is an object model. However, it is difficult to develop an MDR based on ISO/IEC 11179 because the standard has no clear criteria to transform the metamodel into a database. In this paper, we suggest the design of an MDR data model that is based on object-relational transformation methodology (ORTM) for the MDR implementation. Hence, we classify the transformation methods of ORTM according to the corresponding relationships. After classification, we propose modeling rules by defining the standard use of the transformation. This paper builds the relational database tables as an implementation result of an MDR data model. Through experiments and evaluation, we verify the proposed modeling rules and evaluate the suitability of the created table structures. As the result, the proposed method shows that the table structures preserve classes and relationships of the standard metamodel well.