• Title/Summary/Keyword: 규칙기반 모델

Search Result 610, Processing Time 0.024 seconds

The Bio-XML Storage System Using Object Database Systems (객체 데이터베이스를 이용한 바이오 XML 저장시스템)

  • 김태경;이경희;임정곤;정태성;조완섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.235-237
    • /
    • 2004
  • 본 논문은 객체 데이터베이스 속성을 적용하여 데이터베이스 스키마를 생성하고 XML문서를 저장하는 기법을 제안한다 기존의 관계형 데이터베이스는 트리 기반의 XML 문서를 플랫한 테이블에 저장하므로 모델 불일치 문제가 발생한다. 또한, 문서를 검색할 때 고비용의 조인 연산이 필요하다. 하지만 객체 데이터베이스의 집합값 속성과 객체참조 속성은 트리 기반의 IDA 문서를 저장할 때 모델 측면에서 자연스럽다. 집합간 속성과 객체참조 속성은 Uを질의에 자주 사용되는 경로질의 및 순서를 이용하는 질의를 처리할 때게도 유리하다. 본 논문에서는 객체 데이터베이스의 집합값 속성과 객체참조 속성을 이용하여 XML 문서를 저장하기 위한 2가지의 DTD의존적 스키마 설계 기법인 i) 기본 규칙, ii) 인라인 규칙을 제시한다. 다양한 XML 문서에 대해 각각의 규칙에 따른 클래스 수, 저장 공간, 그리고 질의처리 시간을 비교 분석하였다.

  • PDF

Prediction of Yeast Protein-Protein Interactions by Neural Feature Association Rule (Neural Feature Association Rule을 이용한 효모 단백질-단백질 상호작용의 예측)

  • Eom Jae-Hong;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.277-279
    • /
    • 2005
  • 단백질들은 서로 다른 단백질들과 상호작용하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질들 간의 상호작용 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이터가 산출된 후게놈시대(post-genomic era)에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모에 대해 공개되어있는 단백질 상호작용 데이터들에서 속성들 간의 연관규칙 학습을 통해 잠재적 단백질 상호작용들을 예측하기 위한 연관규칙 기반의 상호작용 예측 방법을 제시한다. 단백질들 간의 상호작용 예측을 위해 고려되는 각 단백질의 다수의 속성차원은 정보이론 기반의 속성선택 알고리즘을 이용하여 효율적으로 줄이며 상호작용의 속성집합을 이용하여 신경망을 훈련시키고 이렇게 훈련된 신경망에서 속성들 간의 연관규칙을 디코딩하여 연관규칙 기반의 상호작용 예측에 활용한다. 연관속성 발굴을 통한 상호작용 예측을 위한 마이닝 방법으로는 연관규칙 발견 알고리즘을 사용하였으며 예측 정확도를 높이기 위하여 신경망 예측 모델의 학습 결과를 디코딩한 규칙들이 추가적으로 사용하였다. 논문에서 제안한 방법을 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 평균 약 $94.5\%$의 예측 정확도를 보였다.

  • PDF

Domain Knowledge Incorporated Local Rule-based Explanation for ML-based Bankruptcy Prediction Model (머신러닝 기반 부도예측모형에서 로컬영역의 도메인 지식 통합 규칙 기반 설명 방법)

  • Soo Hyun Cho;Kyung-shik Shin
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.105-123
    • /
    • 2022
  • Thanks to the remarkable success of Artificial Intelligence (A.I.) techniques, a new possibility for its application on the real-world problem has begun. One of the prominent applications is the bankruptcy prediction model as it is often used as a basic knowledge base for credit scoring models in the financial industry. As a result, there has been extensive research on how to improve the prediction accuracy of the model. However, despite its impressive performance, it is difficult to implement machine learning (ML)-based models due to its intrinsic trait of obscurity, especially when the field requires or values an explanation about the result obtained by the model. The financial domain is one of the areas where explanation matters to stakeholders such as domain experts and customers. In this paper, we propose a novel approach to incorporate financial domain knowledge into local rule generation to provide explanations for the bankruptcy prediction model at instance level. The result shows the proposed method successfully selects and classifies the extracted rules based on the feasibility and information they convey to the users.

Development of Modular Neural Networks by Evolving Lindenmayer-System (린덴마이어-시스템의 진화를 통한 모듈형 신경망의 개발)

  • 이지행;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.330-332
    • /
    • 1998
  • 모듈형 신경망은 인간의 정보처리 시스템이 고유한 목적이나 기능을 가진 모듈로 되어있다는 신경과학의 연구에 기반하여 제안된 모델이다. 하지만 모듈의 크기와 기능모듈간의 연결구조를 결정하는데 큰 어려움이 있다. 본 논문에서는 간단한 규칙으로 복잡한 구조를 생성해 낼 수 있는 린덴마이어-시스템을 이용하여 모듈형 신경망의 크기 및 연결구조를 만들어내는 과정에 대하여 고찰해본다. 또한, 신경망의 생성규칙을 유전자형으로 표현하고 진화 알고리즘을 적용하여 주어진 문제를 해결할 수 있는 최적의 규칙을 찾아내는 방법을 제안한다. 본 논문에서 제안한 유전자형과 진화연산은 최적화된 문법규칙 및 신경망의 구조를 만들어 낼 수 있는 가능성을 보여준다.

  • PDF

Efficient Change Detection between RDF Models Using Backward Chaining Strategy (후방향 전진 추론을 이용한 RDF 모델의 효율적인 변경 탐지)

  • Im, Dong-Hyuk;Kim, Hyoung-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2009
  • RDF is widely used as the ontology language for representing metadata on the semantic web. Since ontology models the real-world, ontology changes overtime. Thus, it is very important to detect and analyze changes in knowledge base system. Earlier studies on detecting changes between RDF models focused on the structural differences. Some techniques which reduce the size of the delta by considering the RDFS entailment rules have been introduced. However, inferencing with RDF models increases data size and upload time. In this paper, we propose a new change detection using RDF reasoning that only computes a small part of the implied triples using backward chaining strategy. We show that our approach efficiently detects changes through experiments with real-life RDF datasets.

A Knowledge-Based Linguistic Approach for Researcher-Selection (학술전문가 선정을 위한 지식 기반 언어적 접근)

  • Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.6
    • /
    • pp.549-553
    • /
    • 2002
  • This paper develops knowledge-based multiple fuzzy rules for researcher-selection by automatic ranking process. Inference rules for researcher-selection are created, then the multiple fuzzy rule system with max-min inference is applied. The way to handle for selection standards according to a certain criteria in dynamic manner, is also suggested in a simulation model. The model offers automatic, fair, and trust decision for researcher-selection processing.

Rule-Based Generation of Four-Part Chorus Applied With Chord Progression Learning Model (화성 진행 학습 모델을 적용한 규칙 기반의 4성부 합창 음악 생성)

  • Cho, Won Ik;Kim, Jeung Hun;Cheon, Sung Jun;Kim, Nam Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1456-1462
    • /
    • 2016
  • In this paper, we apply a chord progression learning model to a rule-based generation of a four-part chorus. The proposed system is given a 32-note melody line and completes the four-part chorus based on the rule of harmonics, predicting the chord progression with the CRBM model. The data for the training model was collected from various harmony textbooks, and chord progressions were extracted with key-independent features so as to utilize the given data effectively. It was shown that the output piece obtained with the proposed learning model had a more natural progression than the piece that used only the rule-based approach.

Fuzzy Modeling and Control for Nonlinear System (비선형 시스템의 퍼지 모델링과 제어)

  • 이남수;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.145-148
    • /
    • 2000
  • 근래 퍼지 제어 시스템의 설계는 대부분 Takagi-Sugeno 퍼지 모델에 기반하여 행해지고 있다. 이러한 TS퍼지 모델은 각 규칙의 결론부에 선형 상태 방정식의 형태를 위하고 있는데 각각의 상태 방정식은 원 비선형 시스템으로부터 얻어지고 있다. 하지만 시스템이 복잡해지고 비선형성이 강하면 TS퍼지 모델을 얻는데도 어려움이 따른다. 이에 본 논문에서는 TS퍼지 모델을 얻기 위한 한가지 방법을 제안한다. 먼저 시스템을 선형항과 비선형항으로 나누어 비선형항을 선형화하여 퍼지 모델화 하는 일련의 과정에 한가지 법칙을 도입하게 된다. 이렇게 얻어진 퍼지 모델을 기반으로 한 제어에는 많은 연구가 있었으며 본 논문에서는 극배치 방법을 이용한다. 마지막으로 모의 실험을 통하여 제안된 방법의 효용성을 검증한다.

  • PDF

Model of Workflow based Document Management CSCW Environment (CSCW환경에서의 워크플로우 기반 문서 관리 모델)

  • 정성진;이승근;김남용;왕창종
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.267-269
    • /
    • 1998
  • 본 연구는 공동작업환경에서 워크플로우 개념을 도입한 문서 관리 모델을 제안하고 이를 시스템으로 설계하였다. 제안된 모델은 문서를 관계, 상태, 흐름의 세가지 측면에서 모델링 할 수 있으며, 오류를 자동 검출 할 수 있는 규칙들을 내장하고 있다. 이러한 모델을 기반으로 문서 관리 시스템을 설계하여, 모델이 구현 및 적용 가능함을 보였다. 제안한 모델과 시스템은 전자 결제 시스템이나 전자상거래 등의 문서의 절차적 처리가 필요한 응용들에서 사용될 수 있다.

  • PDF

Generating Training Dataset of Machine Learning Model for Context-Awareness in a Health Status Notification Service (사용자 건강 상태알림 서비스의 상황인지를 위한 기계학습 모델의 학습 데이터 생성 방법)

  • Mun, Jong Hyeok;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • In the context-aware system, rule-based AI technology has been used in the abstraction process for getting context information. However, the rules are complicated by the diversification of user requirements for the service and also data usage is increased. Therefore, there are some technical limitations to maintain rule-based models and to process unstructured data. To overcome these limitations, many studies have applied machine learning techniques to Context-aware systems. In order to utilize this machine learning-based model in the context-aware system, a management process of periodically injecting training data is required. In the previous study on the machine learning based context awareness system, a series of management processes such as the generation and provision of learning data for operating several machine learning models were considered, but the method was limited to the applied system. In this paper, we propose a training data generating method of a machine learning model to extend the machine learning based context-aware system. The proposed method define the training data generating model that can reflect the requirements of the machine learning models and generate the training data for each machine learning model. In the experiment, the training data generating model is defined based on the training data generating schema of the cardiac status analysis model for older in health status notification service, and the training data is generated by applying the model defined in the real environment of the software. In addition, it shows the process of comparing the accuracy by learning the training data generated in the machine learning model, and applied to verify the validity of the generated learning data.