• Title/Summary/Keyword: 규모 매개변수

Search Result 239, Processing Time 0.024 seconds

Derivation of rock parameters from Televiewer data (텔레뷰어에 의한 토목설계 매개변수의 산출)

  • Kim Jung-Yul;Kim Yoo-Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.137-155
    • /
    • 1999
  • Recently, Televiewer(Borehole Acoustic Scanner(Televiewer)) has come to be widely used specially for the general engineering construction design. The Televiewer tool using a focussed acoustic beam is to detect the amplitude and traveltime of each reflected acoustic signal at the wall, resulting in the amplitude- and traveltime image respectively. Fractures can be well detected, because they easily scatter the acoustic energy due to the highly narrow beam. In addition, the drilling work will rough the borehole wall so that the acoustic energy can be scattered simply due to the roughness of the wall. Thus, the amplitude level can be directed associated with the elastic properties(impedance) and the hardness of the rock as well. Meanwhile, the traveltime image provides an information about the borehole shape and can be converted to a high precision 3D caliper log(max. 288 arms). In this paper, based on the high resolution of Televiewer images, general evaluation methods are illustrated to derive very reliable rock parameters.

  • PDF

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

Estimation of Settling Efficiency in Sedimentation Basin Using Particle Tracking Method (입자추적기법을 이용한 침전지의 효율 평가)

  • Lee, Kil-Seong;Kim, Sang-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2004
  • Sedimentation basin plays an important role in urban water treatment, and there are many complicated phenomena which need to be understood for efficient design and control of it. Especially, the study on the improvement of settling efficiency is required. In this study, commercial CFD (Computational Fluid Dynamics) program, FLUENT, and particle tracking method were used to simulate the flow in sedimentation basin, and to predict the settling efficiency. Computational domain of real scale was made, and detail factors such as porous wall, and outlet trough were considered instead of being simplified. The simulation results were compared with the experimental data to calibrate the parameters of particle tracking method. Sensitivity analysis showed that the particle diameter had more significant effects on settling efficiency than the particle density. The computation results gave the best agreements with the experimental data, when the value of particle diameter was 26.5 ${\mu}{\textrm}{m}$.

A Method of Contact Pressure Analysis between Half-space and Plate (탄성지반과 판의 접촉압력해석에 관한 연구)

  • Cho, Hyun Yung;Cheung, Jin Hwan;Kim, Seong Do;Han, Choong Mok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1992
  • A method analizing contact pressure between plate and elastic half space is presented by using F.E.M. With the method, the pressure intensities at surface nodes of half space cae be directly calculated by using flexibility matrix of half space. The method is originally presented by Y.K. Cheung et al.(3) Insted of Y.K. Cheung's method, which use a conception of equi-contact pressure area around each surface nodes of half space in the noded rectanqular element area. We use the equi-contact pressure area around the Gaussian integration points of half space surface in the noded isoparametric element area. Numarical examples are presented and compared with other's studies.

  • PDF

The assessment of the relative contribution of the shape of instantaneous unit hydrograph with heterogeneity of drainage path (배수경로 이질성에 의한 순간단위도 형상의 상대적 기여도 평가)

  • Choi, Yong-Joon;Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.897-909
    • /
    • 2009
  • The relative contribution of between hillslope-flow and stream-flow by heterogeneity of drainage path are quantitatively assessed in the present study with GIUH model based on grid of GIS. Application watersheds are selected Pyeongchang, Bocheong and Wi river basin of IHP in Korea. The mean and variance of hillslope and stream length are estimated and analyzed in each watershed. And coupling with observation storm events, estimate hillslope and stream characteristic velocity which dynamic parameters of GIUH model. The mean and variance of distribution of travel time (i.e. IUH) calculate using estimated pass lengths and characteristic velocities. And the relative contributions are assessed by heterogeneity of drainage path. As a result, the effect of the variance that determine shape of IUH dominate with hillslope's effect in the small watershed area (within 500 $km^2$). Thus, GIUH in the small watershed area must consider hillslope-flow.

유기 금속 화학 증착법에 의한 Si 기판 위에 GaP 층 성장시 에피의 초기 단계의 성장 매개 변수에 영향

  • Gang, Dae-Seon;Seo, Yeong-Seong;Kim, Seong-Min;Sin, Jae-Cheol;Han, Myeong-Su;Kim, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.209.1-209.1
    • /
    • 2013
  • GaP는 가시광선 발광다이오드을 얻을 수 있는 적절한 재료중의 하나로 해당영역의 파장에 대하여 높은 양자효율을 얻을 수 있고, 깊은 준위 재결합이 없기 때문에 GaP 녹색 및 As 첨가한 GaAsP 적색 LED 에 적용할 수 있습니다. 또한, 상온에서 2.2 eV 에 해당하는 넓은 에너지 밴드갭을 가지고 있으므로, 소음이 없는 자외선 검출기에도 적합합니다. 이 물질에 대한 소자들은 기존에 GaP 기판을 사용하였습니다. 최근, GaP 와 격자상수가 비슷한 Si 기판을 활용하여 그 위에 성장하는 방법에 대한 관심이 많아졌습니다. Si는 물리적 및 화학적으로 안정하고 딱딱한 소재이며 대면적 기판을 쉽게 얻을 수 있어 전자 기기 및 대규모 집적 회로의 좋은 소재입니다. Si 와 대조적으로 GaP은 깨지기 쉬운 재료이며 GaP 기판은 Si와 같은 대면적 기판을 얻을 수 없습니다. 이러한 문제의 한 가지 해결책은 Si 기판위에 GaP 층의 성장입니다. GaP 과 Si의 조합은 현재의 광전소자 들에 더하여 더 많은 응용프로그램들을 가능하게 할 것입니다. 그러나, Si 기판위에 GaP 성장 시 삼차원적 성장 및 역위상 경계면과 같은 문제점들이 발생하므로 질이 높고 균일한 결정의 GaP 를 얻기가 어렵습니다. 따라서, Si 에 GaP 의 성장시 초기 단계를 제어하는 성장 기술이 필요합니다. 본 연구에서는, 유기금속화학증착법을 이용하여 Si 기판위에 양질의 GaP를 얻을 수 있는 최적의 성장조건을 얻고자 합니다. 실험 조건은 Si에 GaP의 에피택셜 성장의 초기 단계에 영향을 주는 V/III 비율, 성장압력, 기판방향 등을 가변하는 조건으로 진행하였습니다. V/III 비율은 100~6400, 성장 압력은 76~380 Torr로 진행하였고, Si 기판은 just(001)과 2~6도 기울어진 (001) 기판을 사용하였습니다.

  • PDF

GIS Based Flood Inundation Analysis in Protected Lowland Considering the Affection of Structure (구조물의 영향을 고려한 GIS기반의 제내지 홍수범람해석)

  • Choi, Seung-Yong;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.1-17
    • /
    • 2009
  • In recent years, most of flood damage is associated with the levee failure. The objective of this study is to predict flow depths, flood area, flooding time and flood damage through flood inundation analysis considering the overflow of levee and the characteristics of levee failure. The hydrological parameters were extracted from GIS data such as DEM, land cover and soil map to estimate levee failure discharge. In addition, the characteristics of flood wave propagation could be accurately predicted as flood inundation analysis was accomplished considering the affection of structure within protected lowland and hourly prediction of flooded areas and estimation of flood strength will be utilized as basic data for the flood defence and establishment of measure to reduce flood damage.

  • PDF

Two-dimensional Inundation Analysis Using Stochastic Rainfall Variation and Geographic Information System (추계학적 강우변동생성 기법과 GIS를 연계한 2차원 침수해석)

  • Lee, Jin-Young;Cho, Wan-Hee;Han, Kun-Yeun;Ahn, Ki-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2010
  • Recently actual rainfall pattern is decreasing rainy days and increasing in rainfall intensity and the frequency of flood occurrence is also increased. To consider recent situation, Engineers use deterministic methods like a PMP(Probable Maximum Precipitation). If design storm wouldn't occur, increasing of design criteria is extravagant. In addition, the biggest structure cause trouble with residents and environmental problem. And then it is necessary to study considering probability of rainfall parameter in each sub-basin for design of water structure. In this study, stochastic rainfall patterns are generated by using log-ratio method, Johnson system and multivariate Monte Carlo simulation. Using the stochastic rainfall patterns, hydrological analysis, hydraulic analysis and 2nd flooding analysis were performed based on GIS for their applicability. The results of simulations are similar to the actual damage area so the methodology of this study should be used about making a flood risk map or regidental shunting rout map against the region.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.