Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.734-736
/
2003
이동체의 궤적을 저장하는 대용량 이동체 DB는 대규모의 이동 객체 궤적의 효과적인 검색을 위하여 디클러스터링 기법을 통한 객체 궤적의 분산 배치가 필수적으로 요구된다. 그러나 기존 공간 객체의 디클러스터링 기법은 이동체의 특성과 시간 영역에 대한 고려 없이 디클러스터링을 수행한다. 또한, 단순히 현재 시점에서 색인 노드의 공간 관련성안을 판단의 근거로 삼고 있어서 효과적인 디클러스터링이 되지 않는 단점이 있다. 이러한 이유로 이동체 데이터베이스에서 빠른 질의 수행을 위한 디클러스터링 기법이 필요하다. 이 논문에서는 이동체 궤적에 대한 질의 시 빠른 응답 시간을 얻고 전제 시스템의 처리율 향상을 위한 디클러스터링 방법을 제시한다. 제시되는 방법은 이동체의 진행 방향에 대하여 이동 시간에 의한 이동 궤적의 관성을 정의하고, 이를 색인의 노드 단위로 확장한 노드의 관성을 정의한다. 정의된 관성을 이용하여 이동체 궤적의 노드가 저장될 디스크를 정의함으로써 궤적 데이터의 디클러스터링을 효과적으로 수행할 수 있다.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.06a
/
pp.97-100
/
2008
최근 궤적 정보를 이용한 많은 연구들이 진행되고 있으나, 이들 대부분의 연구는 유클리드 공간 내의 궤적들을 대상으로 하고 있다. 그러나 실제 응용에서 대부분의 이동 객체들은 도로 네트워크 공간상에 존재하므로, 유클리드 공간을 대상으로 한 연구들은 도로 네트워크 공간에 적용시키는 것은 적합하지 않다. 본 논문에서는 도로 네트워크 내 이동 객체들의 대용량 궤적 정보를 대상으로 제안된 선행 연구의 클러스터링 기법을 다양한 실험을 통하여 그 정확도를 검증한다. 실험 결과에 따르면 제안된 기법은 사람에 의하여 유사 궤적들을 클러스터링한 결과와 비교하여 95%이상의 높은 정확도를 보였다.
Proceedings of the Korean Information Science Society Conference
/
2006.10c
/
pp.256-260
/
2006
본 논문에서는 도로 네트워크내의 이동 객체들을 대상으로 하는 효과적인 유사 궤적 검색 및 클러스터링 기법에 대하여 논한다. 이동 객체들 간의 유사도 측정을 위한 기존의 기법들은 대부분 유클리디안 공간 상의 궤적들을 대상으로 한다. 그러나 실제 응용에서 대부분의 이동 객체들은 도로 네트워크 공간 상에 존재하므로, 이러한 실제 상황을 반영하는 유사도 측정 방식이 요구된다. 본 논문에서는 각 이동 객체가 시간에 따라 지나간 도로 세그먼트들의 리스트를 궤적이라 정의하고, 이렇게 정의된 궤적들을 대상으로 하는 새로운 유사도 측정 함수를 제안한다. 제안된 유사도 측정 함수는 궤적을 이루는 도로 세그먼트의 길이와 식별자 정보를 이용한다. 제안된 유사도 측정 함수에 의하여 측정된 각 궤적 쌍 간의 유사도를 기반으로 전체 궤적들을 FastMap을 이용하여 k차원 공간상의 점들로 사상하고, 이들을 k-medoids 방식을 이용하여 클러스터링 한다. 구성된 클러스터와 연관된 사용자 정보, 도로 정보 등을 함께 사용자에게 제공하는 활용 예를 제시함으로써 제안된 기법이 실제 응용에 유용하게 사용될 수 있음을 보인다.
Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
KIISE Transactions on Computing Practices
/
v.22
no.9
/
pp.419-425
/
2016
In navigator systems, keeping map data up-to-date is an important task. Manual update involves a substantial cost and it is difficult to achieve immediate reflection of changes with manual updates. In this paper, we present a method for trajectory-center extraction, which is essential for automatic road map generation with GPS data. Though clustered trajectories are necessary to extract the center road, real trajectories are not clustered. To address this problem, this paper proposes a new method using the maximum overlapping interval and trajectory clustering. Finally, we apply the Virtual Running method to extract the center road from the clustered trajectories. We conducted experiments on real massive taxi GPS data sets collected throughout Gang-Nam-Gu, Sung-Nam city and all parts of Seoul city. Experimental results showed that our method is stable and efficient for extracting the center trajectory of real roads.
Recently, there have been many research efforts proposed on trajectory information. Most of them mainly focus their attention on those objects moving in Euclidean space. Many real-world applications such as telematics, however, deal with objects that move only over road networks, which are highly restricted for movement. Thus, the existing methods targeting Euclidean space cannot be directly applied to the road network space. This paper proposes a new clustering scheme for a large volume of trajectory information of objects moving over road networks. To the end, we first define a trajectory on a road network as a sequence of road segments a moving object has passed by. Next, we propose a similarity measurement scheme that judges the degree of similarity by considering the total length of matched road segments. Based on such similarity measurement, we propose a new clustering algorithm for trajectories by modifying and adjusting the FastMap and hierarchical clustering schemes. To evaluate the performance of the proposed clustering scheme, we also develop a trajectory generator considering the observation that most objects tend to move from the starting point to the destination point along their shortest path, and perform a variety of experiments using the trajectories thus generated. The performance result shows that our scheme has the accuracy of over 95% in comparison with that judged by human beings.
Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
Journal of KIISE
/
v.43
no.1
/
pp.40-46
/
2016
Digital road map generation is primarily based on artificial satellite photographing or in-site manual survey work. Therefore, these map generation procedures require a lot of time and a large budget to create and update road maps. Consequently, people have tried to develop automated map generation systems using GPS trajectory data sets obtained by public vehicles. A fundamental problem in this road generation procedure involves the extraction of representative trajectory such as main roads. Extracting a representative trajectory requires the base data set of piecewise line segments(GPS-trajectories), which have close starting and ending points. So, geometrically similar trajectories are selected for clustering before extracting one representative trajectory from among them. This paper proposes a new divide- and-conquer approach by partitioning the whole map region into regular grid sub-spaces. We then try to find similar trajectories by sweeping. Also, we applied the $Fr{\acute{e}}chet$ distance measure to compute the similarity between a pair of trajectories. We conducted experiments using a set of real GPS data with more than 500 vehicle trajectories obtained from Gangnam-gu, Seoul. The experiment shows that our grid partitioning approach is fast and stable and can be used in real applications for vehicle trajectory clustering.
동영상에서 움직이는 객체 검출은 동영상의 내용을 표현하고 유사한 동영상을 검색하는 데 있어 중요한 특징간을 추출하는 방법으로 사용된다. 그러나 복잡하게 카메라가 움직이는 동영상에서 움직이는 객체 검출은 아직까지 어려운 과제이다. 본 논문에서는 복잡한 카메라의 움직임이 있는 환경에서 움직이는 객체를 강인하게 검출하는 방법을 제안한다. 움직이는 객체 검출 방법은 입력 영상을 색상간의 클러스터링을 이용하여 각 영역으로 구분하는 Mean Shift 알고리즘과 인접한 프레임에서 구분된 영역을 대응시켜 영역의 모션 벡터를 구하는 영역 매칭, 유사한 궤적을 가지는 영역들의 클러스터링을 이용하여 객체를 검출하는 궤적 클러스터링 알고리즘을 사용한다. 제안한 영역 기반 알고리즘은 기존의 픽셀이나 블록 기반의 방법보다 움직이는 객체를 정확하게 검출하였다. 실험 결과 복잡하게 움직이는 카메라의 환경 속에서 움직이는 객체를 강인하게 검출하였다.
Park, Jin-Gwan;Oh, Joo-Seong;Kim, Bum-Mu;Jeon, Sung-Min;Lee, Sung-Ro;Jeong, Min-A
Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.102-104
/
2014
본 논문은 해상 교통량 증가로 급증하는 선박 사고 위험을 줄이기 위해 안전 운항을 위한 대규모 선박 궤적 클러스터링을 제안한다. 선박의 위도와 경도, 이름 및 상태, 속도, 선수 방향 등이 기록된 대용량의 데이터집합을 바탕으로 선박 궤적 클러스터링을 통해 총 2개의 선박 대표 궤적을 추출한다. 해당 선박의 이전까지의 대표 궤적, 그리고 해당 해상의 모든 선박의 대표 궤적을 추출한 후 현재 해당 선박의 궤적패턴과 비교하여 유사하지 않으면 Outlier로 판별하여 이상 거동 및 불규칙 움직임, 충돌상황을 대비할 수 있도록 의사결정에 도움을 줄 수 있는 알고리즘을 제안하였다.
The R-trees are usually used for an index of trajectories in moving-objects databases. However, they need to access a number of nodes to trace same trajectories because of considering only a spatial proximity. Overlaps and dead spaces should be minimized to enhance the performance of range queries in moving-objects indexes. Trajectories of moving-objects should be preserved to enhance the performance of the trajectory queries. In this paper, we propose the TP3DR-tree(Trajectory Preserved 3DR-tree) using clusters of trajectories for range and trajectory queries. The TP3DR-tree uses two split policies: one is a spatial splitting that splits the same trajectory by clustering and the other is a time splitting that increases space utilization. In addition, we use connecting information in non-leaf nodes to enhance the performance of combined-queries. Our experiments show that the new index outperforms the others in processing queries on various datasets.
Proceedings of the Korean Information Science Society Conference
/
2003.04a
/
pp.767-769
/
2003
컴퓨터와 무선 통신 기술의 발달로 인하여 LBS(Location based Service)와 같은 새로운 이동체 관련 서비스가 생겨나고 있다. 이와 같은 서비스들은 이동체들이 일정 주기를 가지고 자신의 정보를 서버로 전송하는데 이는 많은 디스크 입출력을 요구하게 된다. 그러므로 이동체 데이터에 대하여 다중 디스크를 이용한 병렬 입출력이 요구되고 있다. 그러나 기존의 디클러스터링 방법은 시간 도메인을 고려하지 않거나 공간 관련성만을 고려하여 디클러스터링을 하므로, 하나의 디스크에 특정 이동체의 궤적이 집중 되는 문제점이 있다. 이 문제점은 디스크의 병목현상으로 인한 느린 응답시간과 낮은 처리율의 결과를 발생시킨다. 그러므로 이동 객체의 빠른 질의 처리를 위한 새로운 디클러스터링 기법이 필요하다. 이 논문에서는 다중 디스크 기반의 시스템에서 이동 객체에 대한 영역질의시 빠른 응답시간과 높은 처리율물 얻기 위하여 새로운 디클러스터링 기법을 제시한다. 이동체 데이터의 궤적 MBB중 공간 좌표로부터 Predefined Disk를 생성하고 PDT-Proximity를 이용하여 시간 도메인을 고려하는 방법이다. 위와 같이 이동 객체의 특성을 고려한 새로운 디클러스터링 방법으로 시스템의 성능을 향상시킬 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.