• 제목/요약/키워드: 궤적 클러스터링

검색결과 29건 처리시간 0.042초

관성을 이용한 이동체 데이터베이스의 디클러스터링 (Declustering of Moving object database based on Inertia)

  • 서영덕;김진덕;홍봉희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.734-736
    • /
    • 2003
  • 이동체의 궤적을 저장하는 대용량 이동체 DB는 대규모의 이동 객체 궤적의 효과적인 검색을 위하여 디클러스터링 기법을 통한 객체 궤적의 분산 배치가 필수적으로 요구된다. 그러나 기존 공간 객체의 디클러스터링 기법은 이동체의 특성과 시간 영역에 대한 고려 없이 디클러스터링을 수행한다. 또한, 단순히 현재 시점에서 색인 노드의 공간 관련성안을 판단의 근거로 삼고 있어서 효과적인 디클러스터링이 되지 않는 단점이 있다. 이러한 이유로 이동체 데이터베이스에서 빠른 질의 수행을 위한 디클러스터링 기법이 필요하다. 이 논문에서는 이동체 궤적에 대한 질의 시 빠른 응답 시간을 얻고 전제 시스템의 처리율 향상을 위한 디클러스터링 방법을 제시한다. 제시되는 방법은 이동체의 진행 방향에 대하여 이동 시간에 의한 이동 궤적의 관성을 정의하고, 이를 색인의 노드 단위로 확장한 노드의 관성을 정의한다. 정의된 관성을 이용하여 이동체 궤적의 노드가 저장될 디스크를 정의함으로써 궤적 데이터의 디클러스터링을 효과적으로 수행할 수 있다.

  • PDF

도로 네트워크 환경을 위한 궤적 클러스터링의 성능 평가 (Performance Evaluation of Trajectory Clustering in Road Network Environment)

  • 백지행;원정임;김상욱
    • 한국GIS학회:학술대회논문집
    • /
    • 한국GIS학회 2008년도 공동춘계학술대회
    • /
    • pp.97-100
    • /
    • 2008
  • 최근 궤적 정보를 이용한 많은 연구들이 진행되고 있으나, 이들 대부분의 연구는 유클리드 공간 내의 궤적들을 대상으로 하고 있다. 그러나 실제 응용에서 대부분의 이동 객체들은 도로 네트워크 공간상에 존재하므로, 유클리드 공간을 대상으로 한 연구들은 도로 네트워크 공간에 적용시키는 것은 적합하지 않다. 본 논문에서는 도로 네트워크 내 이동 객체들의 대용량 궤적 정보를 대상으로 제안된 선행 연구의 클러스터링 기법을 다양한 실험을 통하여 그 정확도를 검증한다. 실험 결과에 따르면 제안된 기법은 사람에 의하여 유사 궤적들을 클러스터링한 결과와 비교하여 95%이상의 높은 정확도를 보였다.

  • PDF

도로 네트워크에서의 유사 궤적 클러스터링 (Similar Trajectory Clustering on Road Networks)

  • 백지행;원정임;김상욱
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (C)
    • /
    • pp.256-260
    • /
    • 2006
  • 본 논문에서는 도로 네트워크내의 이동 객체들을 대상으로 하는 효과적인 유사 궤적 검색 및 클러스터링 기법에 대하여 논한다. 이동 객체들 간의 유사도 측정을 위한 기존의 기법들은 대부분 유클리디안 공간 상의 궤적들을 대상으로 한다. 그러나 실제 응용에서 대부분의 이동 객체들은 도로 네트워크 공간 상에 존재하므로, 이러한 실제 상황을 반영하는 유사도 측정 방식이 요구된다. 본 논문에서는 각 이동 객체가 시간에 따라 지나간 도로 세그먼트들의 리스트를 궤적이라 정의하고, 이렇게 정의된 궤적들을 대상으로 하는 새로운 유사도 측정 함수를 제안한다. 제안된 유사도 측정 함수는 궤적을 이루는 도로 세그먼트의 길이와 식별자 정보를 이용한다. 제안된 유사도 측정 함수에 의하여 측정된 각 궤적 쌍 간의 유사도를 기반으로 전체 궤적들을 FastMap을 이용하여 k차원 공간상의 점들로 사상하고, 이들을 k-medoids 방식을 이용하여 클러스터링 한다. 구성된 클러스터와 연관된 사용자 정보, 도로 정보 등을 함께 사용자에게 제공하는 활용 예를 제시함으로써 제안된 기법이 실제 응용에 유용하게 사용될 수 있음을 보인다.

  • PDF

최대 중첩구간을 이용한 새로운 GPS 궤적 클러스터링 (A new Clustering Algorithm for GPS Trajectories with Maximum Overlap Interval)

  • 김태용;박보국;박진관;조환규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권9호
    • /
    • pp.419-425
    • /
    • 2016
  • 내비게이션 시스템에서 지도 데이터를 최신 정보로 유지하는 것은 중요한 일이다. 그러나 수작업을 통한 갱신은 비용이 많이 소요될 뿐만 아니라 갱신되는 정보를 즉각적으로 반영하기 힘들다. 본 논문에서는 GPS 데이터를 이용하여 자동으로 도로를 생성해주는 시스템에서 가장 중요한 문제 중 하나인 중심 도로를 추출하는 기법에 관하여 살펴보고자 한다. 중심도로를 추출하기 위해서는 클러스터링 시킨 궤적이 필요하지만, 실제 궤적은 클러스터링 되어있지 않다. 이 문제를 해결하기 위하여 본 논문에서는 최대 중첩구간 탐색과 궤적 클러스터링 과정을 통하여 효과적으로 궤적에 대해 클러스터링 하는 기법을 제안한다. 마지막으로 클러스터링 시킨 궤적에 대하여 가상달리기 기법을 적용하여 중심도로를 추출하였다. 실험 데이터로는 실제 대용량의 강남구, 성남시, 서울시 전체를 지나다니는 택시 GPS 데이터를 수집하여 실험을 하였고, 실험 결과 제안기법이 실제 중심 도로를 추출하는데 안정적이고 효율적인 것을 보였다.

도로 네트워크 환경을 위한 궤적 클러스터링 (Trajectory Clustering in Road Network Environment)

  • 백지행;원정임;김상욱
    • 정보처리학회논문지D
    • /
    • 제16D권3호
    • /
    • pp.317-326
    • /
    • 2009
  • 최근 궤적 정보를 이용한 많은 연구들이 진행되고 있으나, 이들 대부분의 연구는 유클리드 공간 내의 궤적들을 대상으로 하고 있다. 그러나 실제 응용에서 대부분의 이동 객체들은 도로 네트워크 공간상에 존재하므로, 유클리드 공간을 대상으로 한 연구들을 도로 네트워크 공간에 적용시키는 것은 적합하지 않다. 본 논문에서는 도로 네트워크 내 이동 객체들의 대용량 궤적 정보를 대상으로 하는 효과적인 클러스터링 기법에 대하여 논한다. 이를 위하여 우선 본 논문에서는 궤적을 각 이동 객체가 시간에 따라 지나온 도로 세그먼트들의 연속으로 정의한다. 다음, 도로 세그먼트들의 길이와 식별자 정보를 이용한 새로운 유사도 측정 함수를 제안하고, 이를 이용하여 측정된 궤적간의 유사도 정보를 기반으로 FastMap과 계층 클러스터링(hierarchical clustering)기법을 이용하여 전체 궤적들을 클러스터링하는 방식을 제안한다. 또한, 본 논문에서는 실제 응용에서 대부분의 이동 객체는 최단 거리를 이용하여 움직인다는 특성을 반영한 새로운 궤적 생성 기법을 제안하고, 이렇게 생성된 궤적 데이터를 이용하여 제안된 클러스터링 기법에 대한 다양한 성능 평가 결과를 보인다. 실험 결과에 따르면 제안된 기법은 사람에 의하여 유사 궤적들을 클러스터링한 결과와 비교하여 95%이상의 높은 정확도를 보였다.

대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링 (An Efficient Clustering Algorithm for Massive GPS Trajectory Data)

  • 김태용;박보국;박진관;조환규
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.40-46
    • /
    • 2016
  • 도로지도 생성은 인공위성 촬영이나 현장실사를 기반으로 한다. 그리하여 도로지도를 생성하고 수정하는데 많은 시간과 비용이 든다. 이러한 이유로 차량 GPS 데이터를 이용해 도로지도를 생성하는 연구가 활발히 진행되고 있다. 도로지도 생성 연구에서 가장 중요한 문제는 주도로와 같은 대표궤적을 추출하는 것이다. 대표궤적 추출을 수행할 때에는 시작과 끝이 비슷한 궤적데이터들의 집합을 전제로 하여 궤적을 추출한다. 따라서 대표궤적을 추출하기에 앞서 전처리 과정으로 궤적 클러스터링 작업이 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 하나의 영역을 일정한 격자로 분할하고, Sweep Line 알고리즘을 응용해 유사궤적들을 탐색한다. 마지막으로 프레쉐거리를 이용하여 궤적 간 유사도를 계산하였다. 실제로 서울의 강남구 지역에 있는 500대의 차량 GPS 궤적을 가지고 클러스터링 작업을 수행하였다. 또한, 실험을 통하여 격자분할 접근방식의 빠른 수행시간과 안정성을 보였다.

영역 궤적의 클러스터링을 이용한 비디오 영상에서의 움직이는 객체의 검출 (Moving Object Segmentation Using the Clustering of Region Trajectories)

  • 권영진;이재호;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.15-18
    • /
    • 2001
  • 동영상에서 움직이는 객체 검출은 동영상의 내용을 표현하고 유사한 동영상을 검색하는 데 있어 중요한 특징간을 추출하는 방법으로 사용된다. 그러나 복잡하게 카메라가 움직이는 동영상에서 움직이는 객체 검출은 아직까지 어려운 과제이다. 본 논문에서는 복잡한 카메라의 움직임이 있는 환경에서 움직이는 객체를 강인하게 검출하는 방법을 제안한다. 움직이는 객체 검출 방법은 입력 영상을 색상간의 클러스터링을 이용하여 각 영역으로 구분하는 Mean Shift 알고리즘과 인접한 프레임에서 구분된 영역을 대응시켜 영역의 모션 벡터를 구하는 영역 매칭, 유사한 궤적을 가지는 영역들의 클러스터링을 이용하여 객체를 검출하는 궤적 클러스터링 알고리즘을 사용한다. 제안한 영역 기반 알고리즘은 기존의 픽셀이나 블록 기반의 방법보다 움직이는 객체를 정확하게 검출하였다. 실험 결과 복잡하게 움직이는 카메라의 환경 속에서 움직이는 객체를 강인하게 검출하였다.

  • PDF

선박 대표 궤적 추출을 통한 Outlier 판별 알고리즘 (Outlier Distinction Algorithm via Vessel Representative Trajectory Extraction)

  • 박진관;오주성;김범무;전성민;이성로;정민아
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.102-104
    • /
    • 2014
  • 본 논문은 해상 교통량 증가로 급증하는 선박 사고 위험을 줄이기 위해 안전 운항을 위한 대규모 선박 궤적 클러스터링을 제안한다. 선박의 위도와 경도, 이름 및 상태, 속도, 선수 방향 등이 기록된 대용량의 데이터집합을 바탕으로 선박 궤적 클러스터링을 통해 총 2개의 선박 대표 궤적을 추출한다. 해당 선박의 이전까지의 대표 궤적, 그리고 해당 해상의 모든 선박의 대표 궤적을 추출한 후 현재 해당 선박의 궤적패턴과 비교하여 유사하지 않으면 Outlier로 판별하여 이상 거동 및 불규칙 움직임, 충돌상황을 대비할 수 있도록 의사결정에 도움을 줄 수 있는 알고리즘을 제안하였다.

이동체를 위한 R-트리 기반 색인에서의 궤적 클러스터링 정책 (Policies of Trajectory Clustering in Index based on R-trees for Moving Objects)

  • 반재훈;김진곤;전봉기;홍봉희
    • 정보처리학회논문지D
    • /
    • 제12D권4호
    • /
    • pp.507-520
    • /
    • 2005
  • 이동체 데이터베이스를 위한 과거 궤적 색인으로 R-tree계열이 많이 사용되었다. 그러나 R-tree계열의 색인은 공간 근접성만을 고려하였기 때문에 동일 궤적을 검색을 할 때 많은 노드 접근이 필요하다. 즉 기존의 이동체 색인들은 공간 근접성과 궤적 연결성이 서로 상반된 특징을 가지므로 함께 고려하지 못했다. 이동체 색인에서 영역 질의의 성능개선을 위해서는 노드 간의 심한 중복과 사장 공간(Dead space)을 줄여야하고, 궤적 질의의 성능 개선을 위해서는 이동체의 궤적 보존이 이루어져야 한다. 이와 같은 요구 조건을 만족하기 위해, 이 논문에서는 R-tree 기반의 색인 구조에서 궤적 클러스터링 정책을 제안한다. 노드 분할 정책에서는 궤적 클러스터링을 위해서 동일 궤적을 그룹화해서 분할하는 공간 축 분할 정책과 공간 활용도를 높이는 시간 축 분할 정책을 제안한다. 또한 비단말 노드의 연결 정보를 저장하여 개선된 복합 질의 알고리즘을 제안하였다. 이 논문에서는 제안한 R-tree기반 색인 구조의 구현 및 성능 평가를 통해서 검색성능이 우수함을 보였다.

이동체 데이터의 근접성을 이용한 디클러스터링 방법 (Spatiat-temporal Declustering Method Using Proximity of Moving Object Data)

  • 홍은석;서영덕;홍봉희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.767-769
    • /
    • 2003
  • 컴퓨터와 무선 통신 기술의 발달로 인하여 LBS(Location based Service)와 같은 새로운 이동체 관련 서비스가 생겨나고 있다. 이와 같은 서비스들은 이동체들이 일정 주기를 가지고 자신의 정보를 서버로 전송하는데 이는 많은 디스크 입출력을 요구하게 된다. 그러므로 이동체 데이터에 대하여 다중 디스크를 이용한 병렬 입출력이 요구되고 있다. 그러나 기존의 디클러스터링 방법은 시간 도메인을 고려하지 않거나 공간 관련성만을 고려하여 디클러스터링을 하므로, 하나의 디스크에 특정 이동체의 궤적이 집중 되는 문제점이 있다. 이 문제점은 디스크의 병목현상으로 인한 느린 응답시간과 낮은 처리율의 결과를 발생시킨다. 그러므로 이동 객체의 빠른 질의 처리를 위한 새로운 디클러스터링 기법이 필요하다. 이 논문에서는 다중 디스크 기반의 시스템에서 이동 객체에 대한 영역질의시 빠른 응답시간과 높은 처리율물 얻기 위하여 새로운 디클러스터링 기법을 제시한다. 이동체 데이터의 궤적 MBB중 공간 좌표로부터 Predefined Disk를 생성하고 PDT-Proximity를 이용하여 시간 도메인을 고려하는 방법이다. 위와 같이 이동 객체의 특성을 고려한 새로운 디클러스터링 방법으로 시스템의 성능을 향상시킬 수 있다.

  • PDF