• Title/Summary/Keyword: 궤적 계획

Search Result 110, Processing Time 0.022 seconds

Optimization of Destroyer Deployment for Effectively Detecting an SLBM based on a Two-Person Zero-Sum Game (2인 제로섬 게임 기반의 효과적인 SLBM 탐지를 위한 구축함 배치 최적화)

  • Lee, Jinho
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • An SLBM (submarine-launched ballistic missile) seriously threatens the national security due to its stealthiness that makes it difficult to detect in advance. We consider a destroyer deployment optimization problem for effectively detecting an SLBM. An optimization model is based on the two-person zero-sum game in which an adversary determines the firing and arriving places with an appropriate trajectory that provides a low detection probability, and we establish a destroyer deployment plan that guarantees the possibly highest detection probability. The proposed two-person zero-sum game model can be solved with the corresponding linear programming model, and we perform computational studies with a randomly generated area and scenario and show the optimal mixed strategies for both the players in the game.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

Optimized Global Path Planning of a Mobile Robot Using uDEAS (uDEAS를 이용한 이동 로봇의 최적 전역 경로 계획)

  • Kim, Jo-Hwan;Kim, Man-Seok;Choi, Min-Koo;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.268-275
    • /
    • 2011
  • This paper proposes two optimal path planning methods of a mobile robot using uDEAS (univariate Dynamic Encoding Algorithm for Searches). Before start of autonomous traveling, a self-controlled mobile robot must generate an optimal global path as soon as possible. To this end, numerical optimization method is applied to real time path generation of a mobile robot with an obstacle avoidance scheme and the basic path generation method based on the concept of knot and node points between start and goal points. The first improvement in the present work is to generate diagonal paths using three node points in the basic path. The second innovation is to make a smooth path plotted with the blending polynomial using uDEAS. Effectiveness of the proposed schemes are validated for several environments through simulation.

A Study on Adaptive Design of Experiment for Sequential Free-fall Experiments in a Shock Tunnel (충격파 풍동에서의 연속적 자유낙하 실험에 대한 적응적 실험 계획법 적용 연구)

  • Choi, Uihwan;Lee, Juseong;Song, Hakyoon;Sung, Taehyun;Park, Gisu;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.798-805
    • /
    • 2018
  • This study introduces an adaptive design of experiment (DoE) approach for the hypersonic shock-tunnel testing. A series of experiments are conducted to model the pitch moment coefficient of a cone as the function of the angle of attack and the pitch rate. An algorithm to construct the trajectory of the test model from the images obtained by the high-speed camera is developed to effectively analyze multiple time series experimental data. An adaptive DoE procedure to determine the experimental point based on the analysis results of the past experiments using the algorithm is proposed.

Intelligent Monitoring and Control System for Door-to-Door Parcel Delivery Service (소포 배달을 위한 인텔리전트 모니터링 시스템)

  • Lee, Keum-Woo;Jeong, Hun;Kim, Jin-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.481-484
    • /
    • 2004
  • 이 논문에서는 소포 배달 서비스를 위한 인텔리전트 모니터링 시스템(Intelligent Monitoring and Control System; IMCS)에 대해 기술한다. IMCS 는 GIS, GPS 그리고 무선 통신 기술을 이용하여 택배의 접수와 배달 업무를 효율적이고 효과적으로 개발하기 위한 시스템이다. IMCS는 모두 세개의 서브 시스템으로 구성되어 있는데 접수와 배달 계획을 수립하는 PDPS(Pick-up and Delivery Planning System)과 접수/배달 현황과 차량의 위치를 파악할 수 있는 PDMS(Pick-up and Delivery Monitoring System), 그리고 개인휴대단말기(PDA)을 이용한 실시간 업무 처리 시스템인 MOCS(Mobile Operations and Communication System)으로 구성되어 있다. PDPS는 GIS와 최적화 알고리즘을 이용하여 접수와 배달을 위한 방문 순서와 경로 그리고 고객에게 방문할 예정시간 등을 생성한다. MOCS에서는 GPS와 무선 통신을 이용하여 업무 중 발생한 접수/배달 결과와 위치 정보를 실시간으로 PDMS에 전송하고 바코드 스캐닝과 전자 서명 등의 업무를 지원한다. PDMS에서는 수신한 정보에 따라 소포의 접수/배달 현황과 차량의 위치를 전자지도 상에 표현하고 업무 차량의 이동 궤적을 표시하여 계획된 경로와 비교하여 모니터링하고 관제할 수 있다. 현재 IMCS는 국내 한 우체국에서 시범 운영되고 있다.

  • PDF

Simulating Group Movement on a Roadmap-based Path (로드맵 기반 경로에서의 그룹 이동 시뮬레이션)

  • Yu, Kyeon-Ah;Cho, Su-Jin;Kim, Kyung-Hye
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.105-114
    • /
    • 2011
  • The roadmap-based planning is a path planning method which is used widely for a goal-directed movement in Robotics and has been applied to the world of computer animation such as computer games. However it is unnatural for computer characters to follow the path planned by the roadmap method as it is performed in Robotics. Flocking which is used for realistic and natural movements in computer animation enables character's movement by using a few simple rules without planning unlike the roadmap method. However it is impossible to achieve a goal-directed movement with flocking only because it does not keep states. In this paper we propose a simulation method which combines planning based on the road map with reactive actions for natural movements along the path planned. We define and implement steering behaviors for a leader which are needed to follow the trajectory naturally by analysing characteristics of roadmap-based paths and for the rest of members which follow the leader in various manners by detecting obstacles. The simulations are performed and demonstrated by using the implemented steering behaviors on every possible combination of roadmap-based path planning methods and models of configuration spaces. We also show that the detection of obstacle-collisions can be done effectively because paths are planned in the configuration space in which a moving object is reduced to a point.

A Motion Planning Algorithm for Synchronizing Spatial Trajectories of Multi-Robots (다수 로봇간 공간궤적 동기화를 위한 모션계획 알고리즘)

  • Jeong Young-Do;Kim Sung-Rak;Lee Choong-Dong;Lim Hyun-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1233-1240
    • /
    • 2004
  • Recently the need for cooperative control among robots is increasing in a variety of industrial robot applications. Such a control framework enhances the efficiency of the real robotic assembly environment along with extending the robot application. In this paper, an ethernet-based cooperative control framework was proposed. The cooperative control of robots can multiply the handling capacity of robot system, and make it possible to implement jigless cooperation, due to realization of trajectory-synchronized movement between a master robot and slave robots. Coordinate transformation was used to relate among robots in a common coordinate. An optimized ethernet protocol of HiNet was developed to maximize the speed of communication and to minimize the error of synchronous movement. The proposed algorithm and optimization of network protocol was tested in several class of robots.

Trajectory planning for redundant robot by joint disturbance torque minimization (여유자유도 로봇의 관절외란최소화를 이용한 궤적계획)

  • 최명환;최병진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1581-1584
    • /
    • 1997
  • This paper poropsed an efficient optimization technuque to resolve redundancy and a trajectory planning for a high precision control using proposed optimization technique. The proposed techniqus is the joint disturbance torque optimizatioin considering redundancy in the joing servo control. Joint disturbance torque is not unknown it is described dynamic equation ignored friction and viscosity. The proposed technique is used the dynamic equatiion included the joint disturbance torque characteristics. Numerical example of 3 joint planar redundant robot manipulator is simulated. In the 2-norm minimization of joint disturbance torque we compared pseudoinverse local optimization with proposed technique, and the results showed better the proposed technique. So the proposed technique can be highly precision controlled redundant robot manipulators in the joint servo control.

  • PDF

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어)

  • 이수영;이석한;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

A Study on Straight Line Trajectoties of Robot Mainpulator in Cartesian Space (직각좌표 공간에서 로봇 매니퓰레이터의 직선 궤적계획에 관한 연구)

  • Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.763-766
    • /
    • 1991
  • The moving of each axis in the robot manipulator can be represented with the motion of cartesian space. This paper shows the robot manipulator of the straight line trajectory planning algorithms in the cartesian space. The relation formulas between cartesian space and joint space are induced to accomplish a desired trajectory in the cartesian space and the velocity vector of sampling time in the cartesian space is transformed into the velocity vector of joint by the interpolation method. The error of trajectory in moving is removed by obtaining the real position for the present joint position and the desired distance is made by comparing the real position and the next position. Through the simple tests for suggested algorithms are confirmed the validity of algorithms.

  • PDF