• Title/Summary/Keyword: 궤도 유지 관리

Search Result 90, Processing Time 0.037 seconds

PST Member Behavior Analysis Based on Three-Dimensional Finite Element Analysis According to Load Combination and Thickness of Grouting Layer (하중조합과 충전층 두께에 따른 3차원 유한요소 해석에 의한 PST 부재의 거동 분석)

  • Seo, Hyun-Su;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • Follofwing the accelerating speed-up of trains and rising demand for large-volume transfer capacity, not only in Korea, but also around the world, track structures for trains have been improving consistently. Precast concrete slab track (PST), a concrete structure track, was developed as a system that can fulfil new safety and economic requirements for railroad traffic. The purpose of this study is to provide the information required for the development and design of the system in the future, by analyzing the behavior of each structural member of the PST system. The stress distribution result for different combinations of appropriate loads according to the KRL-2012 train load and KRC code was analyzed by conducting a three-dimensional finite element analysis, while the result for different thicknesses of the grouting layer is also presented. Among the structural members, the largest stress took place on the grouting layer. The stress changed sensitively following the thickness and the combination of loads. When compared with a case of applying only a vertical KRL-2012 load, the stress increased by 3.3 times and 14.1 times on a concrete panel and HSB, respectively, from the starting load and temperature load. When the thickness of the grouting layer increased from 20 mm to 80 mm, the stress generated on the concrete panel decreased by 4%, while the stress increased by 24% on the grouting layer. As for the cracking condition, tension cracking was caused locally on the grouting layer. Such a result indicates that more attention should be paid to the flexure and tension behavior from horizontal loads rather than from vertical loads when developing PST systems. In addition, the safety of each structural member must be ensured by maintaining the thickness of the grouting layer at 40 mm or more.

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

A Study on the Advancement to establish for Surveying of Railway Construction (철도건설공사를 위한 측량에서의 고도화 정착에 관한 연구)

  • Moon, Jae-Woo;Kim, Young-Ha;Oh, Byung-Soo;Han, Chun-Deuk
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1525-1532
    • /
    • 2010
  • Modern surveying techniques have been progressed to get the absolute position of a single coordinate system at any point on the earth with the advent of the Global Navigation Satellite System and One-stop digital equipment. In addition, as the speed of the railway has been increasingly faster, in determining the location of major facilities including the center of tracks, it is required to the sophisticated precision. The surveying of railway construction has applied the technical supports and procedures in accordance with the current requirements. In this study, the applicable guidelines of surveying on practical issues and alternatives would be examined, analyzed, and presented by using the empirical data of pilot areas in the process of design, construction, and the maintenance of railway.

  • PDF

A Study on Logicality for the Periodic Replacements of Continuous Welded Rail based on Accumulated Passing Tonnage (누적통과톤수에 의한 레일교체기준의 타당성 분석)

  • Sung, Deok-Yong;Kong, Sun-Yong;Kim, Park-Jin;Shin, Hyo-Jung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1058-1070
    • /
    • 2007
  • Internal and external railway management corporations are using the periodic replacement criteria of rail by accumulated passing tonnage and wear to maintain rails for servicing. However, internal the periodic replacement criteria of continuous welded rail(CWR) by accumulated passing tonnage is the one(50kg/m-5 million gross tonnage, 60kg/m-6 million gross tonnage) presented in Japan before. It was estimated with the fatigue life about 50kg N rail joints applied diesel train load but it wasn't applied to current conditions of track; elimination of rail joint, using the concrete slab track and operation of light train load and effect of welding, manufacturing technique, grinding of rail. Therefore, in this study, it was investigated the types of damage and cause in welded rails and examined standards and information resources. Also, this study presents preliminary data to revise the periodic replacement criteria of CWR by current accumulated passing tonnage in bending test of laid welded rail and a survey of track maintenance history of Seoul metro.

  • PDF

Evaluation of Rail Fatigue Life by Grinding of Kyeong-Bu High-Speed Line (경부고속선의 레일 연마에 따른 레일 피로수명 평가)

  • Kim, Man-Cheol;Choi, Eun-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.577-582
    • /
    • 2010
  • The importance of maintenance of rail surface defects is increasing according to the KTX operation. That is because during high speed operation of rolling stocks, rail surface defects shorten fatigue life of rail, accelerate track degradation and deteriorate ride comfort. Rail grinding has been applied for effective rail maintenance in Kyeong-Bu HS line. This paper evaluates the effectiveness of rail grinding in term of rail fatigue life. To this end, the stresses of the rail are measured under KTX running and the equivalent stress range is calculated by RMC after the frequency analysis done with rainflow counting method. Also, The Modified Miner's rule is applied to predict the fatigue life of ground rail. The result of the analysis shows that the fatigue life of ground rail is increased by 15%.

Vibration Reduction Effect and Structural Behavior Analysis for Column Member Reinforced with Vibration Non-transmissible Material (진동절연재로 보강된 기둥부재의 진동저감효과 및 구조적 거동분석)

  • Kim, Jin-Ho;Yi, Na-Hyun;Hur, Jin-Ho;Kim, Hee-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted, and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.

A Concept for improving the Level of Autonomy of an LEO Satellite (저궤도 위성의 자율성 수준 향상을 위한 개념 제안)

  • Jeon, Moon-Jin;Kim, Eunghyun;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The ground station which operates the LEO satellite performs monitoring state of health of the satellite, sending the commands for the imaging mission of receiving the images during about 10 minutes of contact time. To finish the planned procedure in limited contact time, specific level of autonomy is applied in the satellite and the ground system. For example, the attitude and orbit control logic has high level of autonomy because it must be operated alone for long period without operator intervention. On the other hand, the fault management logic has relatively low level of autonomy because of that failure detection and safing operation are performed on-board, whereas failure identification and recovery are on-ground operation. The level of autonomy of the satellite affects also the ground operation. The command set for mission operation is generated by ground system. If the satellite has higher level of autonomy, some of operation currently done on-ground can be performed on-board, so the ground operation can be simplified. In this paper, we discuss the level of autonomy and propose a concept for improving the level of autonomy of an LEO satellite.

Reducing Ship Rolling with a Anti-Rolling Pendulum (안티롤링 진자를 이용한 부유체의 횡동요 저감)

  • Park, Sok-Chu;Yi, Geum-Joo;Park, Kyung-Il
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.361-368
    • /
    • 2016
  • A ship's rolling motion can make crew and passengers sick and/or apply forces to the structure that cause damage.. Therefore bilge keels are equipped in most ships for anti-rolling. In special cases, anti-rolling tanks (ARTs), fin stabilizers, or gyroscopes can be installed. However, ARTs require a large area to install, and fin stabilizers and gyroscopes are costly to install and expensive to operate. This paper suggests a Anti-rolling pendulum (ARP) to reduce roll motion. ARPs acts like ARTs. However, the ARP has a circular shaped guidance arc instead of the string or wire of a simple pendulum. The device suggested has about 1/ 8 the weight and 1/ 6 the volume of a ART and is more effective. This study derives the nonlinear and linear differential equations of system motion.

A study on the Vibration Reduction of the Commercial High-speed Train (운영 중인 고속열차의 진동저감에 관한 연구)

  • Jeon, Chang-Sung;Choi, Sunghoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.697-704
    • /
    • 2017
  • This study was carried out to investigate and alleviate the vibration problem of commercial high-speed trains. First, the measurement of the carbody vibration was performed, in order to determine the vibration level of the high-speed train. The measurement result showed that the vibration level of the driver cab was higher than that of the passenger car and that the vibration became bigger toward the trailing end of the train. The vertical vibration of the driver cab and passenger car was larger than the transverse vibration, and the maximum value of the vibration in the ballast section was larger than that in the concrete section. A dynamic analysis was carried out to improve the vibration of the KTX-Sancheon train. The results of the analysis showed that it is necessary to reduce the vibration of the driver cab and both ends of the passenger cars. To reduce the vibration of the driver cab, it was recommended that the stiffness of the secondary coil spring be reduced and the damping coefficient of the secondary vertical damper be increased. It was found that the failure of the suspension system could be the origin of the vibration problem of the high-speed train. The proper management of wheel wear plays an important role in the improvement of the operation efficiency and reduction of the carbody vibration of high-speed trains, and research is underway to change the present wheel profile to increase the mileage between wheel turning.

Review of Minimum Curve Radius and Cant Range Setting for Mixed Section of Low and High speed Trains in Conventional Railway Line (일반철도의 저속 및 고속열차 혼용구간 최소곡선반경 및 설정캔트범위 검토)

  • Lee, Jae-Hyuk;Kim, Jeong-Hyeok;Park, Young-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.345-353
    • /
    • 2020
  • On conventional railway lines, trains with different speeds are operated. Therefore, trains moving on curved sections with cants must accept various ranges of balanced cants, cant deficiency, and cant excess, which is essential for the comfort and safety of train operation. In this study, the correlation between the curve radius, cant, and train speed on a track was analyzed to check the cant range that satisfies the criteria of train types, operation speed, cant deficiency, and cant excess. Also, the range of setting the cant by the curve radius and balanced cant were calculated by a regression analysis of train speed according to the frequency of operation in the case of mixed trains. The results could make it possible to improve the speed of the operation route, reduce the loss of ride quality, reduce the risk of derailing caused by cant deficiency, and minimize the load deflection by excess cant. This will ensure the safety of trains running on curves and improve the efficiency of track maintenance.