• Title/Summary/Keyword: 궤도보정

Search Result 219, Processing Time 0.027 seconds

A Study on Autonomous Update of Onboard Orbit Propagator (위성 탑재용 궤도전파기의 자동 갱신에 관한 연구)

  • Jeong,Ok-Cheol;No,Tae-Su;Lee,Sang-Ryul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.51-59
    • /
    • 2003
  • A method of autonomous update is presented for onboard orbit propagator. On board propagator is an alternative means that could be used for navigation purpose in case of CPS receiver's failure. Although the ground station is not a able to upload a new propagator, the onboard propagator must be maintained most up-to-date. For this, a filtering technique is proposed wherein GPS data are effectively used to continuously update the on board propagator which was uploaded previously. Even if the ground station has generated the on board propagator based on the wrong information, the onboard propagator with updating scheme can automatically correct the errors in the coefficients of residual reconstruction function. Several scenarios were used to show the validity of the scheme for updating the onboard propagator using KOMPSAT-1 orbit data.

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

Analysis of MSAS Correction Information and Performance in Korea (MSAS 보정정보 분석 및 국내 적용 시 성능 평가)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.372-382
    • /
    • 2009
  • A GNSS software for processing the SBAS correction data is developed, and Japan MSAS correction data is analyzed. MSAS orbit correction data is analyzed and compared with WAAS data. MSAS ionosphere correction data is analyzed and the effect of the equatorial anomaly on the correction accuracy is discussed. Degradation due to receive delay of correction information and effect of the degradation on protection level analyzed using partial remove of MSAS correction information. Integrity and availability for precision approch using the MSAS system analyzed.

An Analysis on the Real-Time Performance of the IGS RTS and Ultra-Rapid Products (IGS RTS와 Ultra Rapid 실시간 성능 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • For real-time precise positioning, IGS provides ephemeris predictions (IGS ultra-rapid, IGU) and real-time ephemeris estimates (real-time service, RTS). Due to the RTS data latency, which ranges from 5 s to 30 s, a short-term prediction process is necessary before applying the RTS corrections. In this paper, the real-time performance of the RTS correction and IGU prediction are compared. The RTS correction availability for the GPS satellites observed in Korea is computed as 99.3%. The RTS correction is applied to broadcast ephemeris to verify the accuracy of the RTS correction. The 3D orbit RMS error of the RTS correction is 0.043 m. Prediction of the RTS correction is modeled as a polynomial, and then the predicted value is compared with the IGU prediction value. The RTS orbit prediction accuracy is nearly equivalent to the IGU prediction, but RTS clock prediction performance is 0.13 m better than the IGU prediction.

SPOT Camera Modeling Using Ephemeris Data (궤도자료를 이용한 SPOT 카메라 모델링)

  • 김만조;차승훈;고보연
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.531-536
    • /
    • 2003
  • In this paper, a camera modeling method that utilizes ephemeris data and imaging geometry is presented. The proposed method constructs a mathematical model only with parameters that are contained in the leader file and does not require any ground control points for model construction. Control points are only needed to eliminate geolocation error of the model that is originated from errors in the parameters that are used in model construction. With few (one or two) of control points, RMS error of less than pixel size can be obtained and control points are not necessarily uniformly distributed over the entire scene. This advantage is crucial in large project and will enable to reduce project cost dramatically.

  • PDF

고기동위성 지상처리 정밀자세결정 성능 향상

  • Park, Geun-Ju;Im, Jo-Ryeong;U, Hyeon-Uk;Seo, Du-Cheon;Lee, Seon-Ho;Choe, Hong-Taek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.177.1-177.1
    • /
    • 2012
  • 국내기술로 개발된 고기동 위성이 해상도 70cm급 광학카메라를 탑재하고 태양동기궤도를 따라 지구 주위를 하루에 14바퀴이상 돌면서 임무를 수행한다. 높은 해상도의 영상을 얻기 위해 자세제어계에서는 고성능 별추적기와 자이로를 사용하는 정밀자세결정 로직과 반작용 휠을 사용하는 자세제어 로직을 운용한다. 자세제어계에서는, 발사환경 및 우주환경의 영향으로 인한 자이로의 오정렬, SF오차, 별추적기 상호간 오정렬에 대한 상대보정과 탑재컴퓨터에서 결정한 궤도 및 자세정보와 영상 기준점 정보를 이용하여 절대보정을 수행한다. 한편, 탑재 알고리즘에서는 강건한 자세결정로직을 운용하고 있고, 별추적기의 측정지연 보상, 처리 주기내의 평균 각속도 사용 등 실시간 운용으로 인한 제한으로 성능상의 제약이 있다. 따라서 정밀자세결정 지상 후처리 작업이 필요하며 이를 위해서 기 개발된 지상처리용 정밀자세결정 소프트웨어를 새로운 접속요구규격에 맞춰 업그레이드하였다. 지상처리 정밀자세결정을 위해서 탑재컴퓨터는 영상촬영 전후 일정기간 동안 별추적기 데이터, 자이로 데이터, 탑재컴퓨터에서 결정한 자세정보 등을 매 탑재컴퓨터 처리 주기로 저장하여 지상으로 전송한다. 전송된 자료를 이용하여 지상처리용 정밀자세결정 소프트웨어는 정밀궤도 정보와 결합하여 정밀자세결정을 수행한다. 고기동 위성의 경우 기동 후 정밀자세결정 수렴 속도 향상이 필요하며, 소프트웨어의 필터 파라미터를 조율하여 성능을 향상하였다.

  • PDF

Accuracy Analysis of Absolute Positioning by GNSS (GNSS에 의한 절대측위의 정확도 해석)

  • Lee, Yong Chang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2601-2610
    • /
    • 2013
  • The main limiting factors of Precise Point Positioning(PPP) accuracy are errors in broadcast satellite orbits, clock errors, and the others, which are receiver-dependent errors(ionospheric, tropospheric refraction, multipath, and tides, etc.). Therefore, to facilitate high precision PPP, precise orbits/clocks corrections, the receiver-dependent errors corrections have to apply to multi frequency GNSS measurements for an ionosphere free combination and integer ambiguity resolution in real-time. Currently, there are many Analysis Centers, which offer the precise corrections stream computed in real-time using the global or regional GNSS tracking network. The goles of this research considered performances of the real-time static PPP with using RTCM corrections from NTRIP casters. For this, the corrections streams of Analysis Centers received via NTRIP does apply to GNSS data of check points individually, as well as jointly, in accordance with various session lengths. After that, have compared the PPP results from the corrections streams with each other, and with Standard Point Positioning(SPP) results.

Atmospheric and BRDF Correction Method for Geostationary Ocean Color Imagery (GOCI) (정지궤도 해색탑재체(GOCI) 자료를 위한 대기 및 BRDF 보정 연구)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Palanisamy, Shanmugam;Deschamps, Pierre-Yves;Lee, Zhong-Ping
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.175-188
    • /
    • 2010
  • A new correction method is required for the Geostationary Ocean Color Imager (GOCI), which is the world's first ocean color observing sensor in geostationary orbit. In this paper we introduce a new method of atmospheric and the Bidirectional Reflectance Distribution Function(BRDF) correction for GOCI. The Spectral Shape Matching Method(SSMM) and the Sun Glint Correction Algorithm(SGCA) were developed for atmospheric correction, and BRDF correction was improved using Inherent Optical Property(IOP) data. Each method was applied to the Sea-Viewing Wide Field-of-view Sensor(SeaWiFS) images obtained in the Korean sea area. More accurate estimates of chlorophyll concentrations could be possible in the turbid coastal waters as well as areas severely affected by aerosols.

Development of MATLAB GUI-based Software for Performance Analysis of RNSS Navigation Message and WAD-RNSS Correction (지역 위성항법시스템 항법메시지 및 광역 보정정보 성능 분석을 위한 MATLAB GUI 기반 소프트웨어 개발)

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.510-518
    • /
    • 2023
  • This paper introduces a MATLAB graphical user interface (GUI) based software for performance analysis of navigation message and wide area differential correction of regional navigation satellite system (RNSS). This software was developed to analyze satellite orbit/clock-related performance of navigation message and wide area differential correction simulating RNSS for regions near Korea based on different distributions of monitor and reference stations. As a result of software operation, navigation message and wide area differential correction are given as output in MATLAB file format. From the analysis of output, it was confirmed that valid navigation message and wide area differential correction could be generated from the results about statistical feature of orbit and clock prediction errors, cm-level fitting errors for navigation message parameters, and 81.9% enhancement in range error for wide area differential correction.

THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE (정지궤도 위성의 열해석 모델 보정)

  • Jun, H.Y.;Kim, J.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF