• Title/Summary/Keyword: 궤도각

Search Result 403, Processing Time 0.027 seconds

A Deep-Learning Based Automatic Detection of Craters on Lunar Surface for Lunar Construction (달기지 건설을 위한 딥러닝 기반 달표면 크레이터 자동 탐지)

  • Shin, Hyu Soung;Hong, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.859-865
    • /
    • 2018
  • A construction of infrastructures and base station on the moon could be undertaken by linking with the regions where construction materials and energy could be supplied on site. It is necessary to detect craters on the lunar surface and gather their topological information in advance, which forms permanent shaded regions (PSR) in which rich ice deposits might be available. In this study, an effective method for automatic detection of lunar craters on the moon surface is taken into consideration by employing a latest version of deep-learning algorithm. A training of a deep-learning algorithm is performed by involving the still images of 90000 taken from the LRO orbiter on operation by NASA and the label data involving position and size of partly craters shown in each image. the Faster RCNN algorithm, which is a latest version of deep-learning algorithms, is applied for a deep-learning training. The trained deep-learning code was used for automatic detection of craters which had not been trained. As results, it is shown that a lot of erroneous information for crater's positions and sizes labelled by NASA has been automatically revised and many other craters not labelled has been detected. Therefore, it could be possible to automatically produce regional maps of crater density and topological information on the moon which could be changed through time and should be highly valuable in engineering consideration for lunar construction.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.

Falcon 9 Type Korean RLV and GTO-LV Mission Design (Falcon 9 방식의 한국형 재사용 발사체 및 정지궤도 발사체 임무설계)

  • Lee, Keum-Oh;Seo, Daeban;Lim, Byoungjik;Lee, Junseong;Park, Jaesung;Choi, Sujin;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.32-42
    • /
    • 2022
  • The strategy to develop a launch vehicle family by bundling multiple rocket engines of a single type has been proven by SpaceX and their reusable fleet comprised of Falcon 9 and Falcon Heavy. In this study, we revisit a potential launch vehicle family out of a 35 tonf-class methalox staged combustion cycle engine and evaluate their utility and performance in various space missions. For example, a Korean version of Falcon 9 can deliver 4.7 tons of payload into 500 km SSO in an expendable mode while the payload is reduced to 2.16 tons in a sea-landing reusable mode. A Korean version of Falcon Heavy can deliver 4.4 tons into GTO when launched from the Naro Space Center, indicating that this common booster core configuration can handle Cheollian 2 albeit the high inclination. Once developed, the same methaloax engine can power the first-stage of smallsat launch vehicles and air launch vehicles.

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

Examining Diurnal Thermal Variations by Urban Built Environment Type with ECOSTRESS Land Surface Temperature Data: Evidence from Seoul, Korea (도시 건조환경 유형에 따른 서울시 주간 지표면 온도 변동성 분석: ECOSTRESS 데이터의 활용)

  • Gyuwon Jeon;Yujin Park
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.107-130
    • /
    • 2024
  • Urban land surface temperature (LST) change is a major environmental factor that affects the thermal comfort, energy consumption, and health of urban residents. Most studies that explored the relationship between LST and urban built-environment form analyzed only midday LST. This study explores the diurnal variation of summertime LST in Seoul using ECOSTRESS data, which observes LST at various times of the day and analyzes whether the LST variation differs by built environment type. Launched in 2018, ECOSTRESS operates in a non-sun-synchronous orbit, observing LST with a high resolution of 70 meters. This study collected data from early morning (6:25) to evening (17:26) from 2019 to 2022 to build time-series LST. Based on greenery, water bodies, and building form data, eight types of Seoul's built environment were derived by hierarchical clustering, and the LST fluctuation characteristics of each cluster were compared. The results showed that the spatial disparity in LST increased after dawn, peaked at noon, and decreased again, highlighting areas with rapid versus stable LST changes. Low-rise and high-rise compact districts experienced fast, high temperature increases and high variability, while low-density apartments experienced moderate LST increases and low variability. These results suggest urban forms that can mitigate rapid daytime heating.

Automatic Recognition of Pitch Accent Using Distributed Time-Delay Recursive Neural Network (분산 시간지연 회귀신경망을 이용한 피치 악센트 자동 인식)

  • Kim Sung-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.277-281
    • /
    • 2006
  • This paper presents a method for the automatic recognition of pitch accents over syllables. The method that we propose is based on the time-delay recursive neural network (TDRNN). which is a neural network classifier with two different representation of dynamic context: the delayed input nodes allow the representation of an explicit trajectory F0(t) along time. while the recursive nodes provide long-term context information that reflects the characteristics of pitch accentuation in spoken English. We apply the TDRNN to pitch accent recognition in two forms: in the normal TDRNN. all of the prosodic features (pitch. energy, duration) are used as an entire set in a single TDRNN. while in the distributed TDRNN. the network consists of several TDRNNs each taking a single prosodic feature as the input. The final output of the distributed TDRNN is weighted sum of the output of individual TDRNN. We used the Boston Radio News Corpus (BRNC) for the experiments on the speaker-independent pitch accent recognition. π 1e experimental results show that the distributed TDRNN exhibits an average recognition accuracy of 83.64% over both pitch events and non-events.

A Study on Mobile Antenna System Design with Tri-band Operation for Broadband Satellite Communications and DBS Reception (광대역 위성 통신/방송용 삼중 대역 이동형 안테나 시스템 설계에 관한 연구)

  • Eom Soon-Young;Jung Young-Bae;Son Seong-Ho;Yun Jae-Seung;Jeon Soon-Ick
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.5 s.108
    • /
    • pp.461-475
    • /
    • 2006
  • In this paper, it is described about the tri-band mobile antenna system design to provide broadband multimedia and direct broadcasting services using goo-stationary Koreasat 3, simultaneously operated in Ka/K/Ku band. The radiating part of the antenna system with a fan beam characteristic in the elevation plane is composed of the quasi-offset dual shaped reflector and the tri-band feeder. The tri-band feeder is also composed of the Ka/K dual band feeder with the protruding dielectric rod, the circular polarizer, the ortho-mode transducer and the circular-polarized Ku band feed array. Especially, the Ka/K dual band circular polarizer was realized firstly using the comb-type structure. For fast satellite-tracking on the movement, the Ku band feed array has the structure of the $2{\times}2$ active phased array which can make electrical beams. And, the circular-polarized characteristic in the feed array was improved by $90^{\circ}$ rotating arrangement of four radiating elements polarized circularly by a $90^{\circ}$ hybrid coupler, respectively. Four beam forming channels to make electrical beams at Ku band are divided into the main beam channel and the tracking beam channel in the output, and noise temperature characteristics of each channel were analyzed on the basis of the contributions of internal sub_units. From the fabricated antenna system, the output power at $P_{1dBc}$ of Ka_Tx channel was measured more than 34.1 dBm and the measured noise figures of K/Ku_Rx channels were less than 2.4 dB and 1.5 dB, respectively, over the operating band. The radiation patterns with co- and cross-polarization in the tri-band were measured using a near-field measurement in the anechoic chamber. Especially, Ku radiation patterns were measured after correcting each initial phase of active channels with partial radiation patterns obtained from the independent excitation of each channel. The antenna gains measured in Ka/K/Ku band of the antenna system were more than 39.6 dBi, 37.5 dBi, 29.6 dBi, respectively. And, the antenna system showed good system performances such as Ka_Tx EIRP more than 43.7 dBW and K/Ku_Rx G/T more than 13.2 dB/K and 7.12 dB/K, respectively.

The Evaluation of Quantitative Accuracy According to Detection Distance in SPECT/CT Applied to Collimator Detector Response(CDR) Recovery (Collimator Detector Response(CDR) 회복이 적용된 SPECT/CT에서 검출거리에 따른 정량적 정확성 평가)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.55-64
    • /
    • 2017
  • Purpose Recently, with the spread of SPECT/CT, various image correction methods can be applied quickly and accurately, which enabled us to expect quantitative accuracy as well as image quality improvement. Among them, the Collimator Detector Response(CDR) recovery is a correction method aiming at resolution recovery by compensating the blurring effect generated from the distance between the detector and the object. The purpose of this study is to find out quantitative change depending on the change in detection distance in SPECT/CT images with CDR recovery applied. Materials and Methods In order to find out the error of acquisition count depending on the change of detection distance, we set the detection distance according to the obit type as X, Y axis radius 30cm for circular, X, Y axis radius 21cm, 10cm for non-circular and non-circular auto(=auto body contouring, ABC_spacing limit 1cm) and applied reconstruction methods by dividing them into Astonish(3D-OSEM with CDR recovery) and OSEM(w/o CDR recovery) to find out the difference in activity recovery depending on the use of CDR recovery. At this time, attenuation correction, scatter correction, and decay correction were applied to all images. For the quantitative evaluation, calibration scan(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, water 9293 ml) was obtained for the purpose of calculating the calibration factor(CF). For the phantom scan, a 50 cc syringe was filled with 31 ml of water and a phantom image was obtained by setting $^{99m}TcO_4$ 123.3 MBq. We set the VOI(volume of interest) in the entire volume of the syringe in the phantom image to measure total counts for each condition and obtained the error of the measured value against true value set by setting CF to check the quantitative accuracy according to the correction. Results The calculated CF was 154.28 (Bq/ml/cps/ml) and the measured values against true values in each conditional image were analyzed to be circular 87.5%, non-circular 90.1%, ABC 91.3% and circular 93.6%, non-circular 93.6%, ABC 93.9% in OSEM and Astonish, respectively. The closer the detection distance, the higher the accuracy of OSEM, and Astonish showed almost similar values regardless of distance. The error was the largest in the OSEM circular(-13.5%) and the smallest in the Astonish ABC(-6.1%). Conclusion SPECT/CT images showed that when the distance compensation is made through the application of CDR recovery, the detection distance shows almost the same quantitative accuracy as the proximity detection even under the distant condition, and accurate correction is possible without being affected by the change in detection distance.

  • PDF

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

The Liability for Space Activity of Launching State of Space Object and Improvement of Korea's Space Policy (우주물체 발사국의 우주활동에 대한 책임과 우리나라 우주정책의 개선방향)

  • Lee, Kang-Bin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.295-347
    • /
    • 2013
  • Korea launched the science satellite by the first launch vehicle Naro-ho(KSLV-1) at the Naro Space Center located at Oinarodo, Cohenggun Jellanamdo in August, 2009 and October, 2010. However, the first and second launch failed. At last, on January 30, 2013 the third launch of the launch vehicle Naro-ho has successfully launched and the Naro science satellite penetrated into the space orbit. Owing to the succeed of the launch of Naro-ho, Korea joined the space club by the eleventh turn following the United States, Russia, Japan and China. The United Nations adopted the Outer Space Treaty of 1967, the Rescue Agreement of 1968, the Liability Convention of 1972, the Regislation Convention of 1976, and Moon Agreement of 1979. Korea ratified the above space-related treaties except the Moon Agreement. Such space-related treaties regulate the international liability for the space activity by the launching state of the space object. Especially the Outer Space Treaty regulates the principle concerning the state's liability for the space activity. Each State Party to the Treaty that launches or procures the launching of an object into outer space is internationally liable for damage to another State Party or to its natural or judicial persons by such object or its component parts on the earth, in air space or in outer space. Under the Liability Convention, a launching state shall be absolutely liable to pay compensation for damage caused by its space object on the surface of the earth or to aircraft in flight. The major nations of the world made national legislations to observe the above space-related treaties, and to promote the space development, and to regulate the space activity. In Korea, the United States, Russia and Japan, the national space-related legislation regulates the government's liability of the launching state of the space object. The national space-related legislations of the major nations are as follows : the Outer Space Development Promotion Act and Outer Space Damage Compensation Act of Korea, the National Aeronautic and Space Act and Commercial Space Launch Act of the United States, the Law on Space Activity of Russia, and the Law concerning Japan Aerospace Exploration Agency and Space Basic Act of Japan. In order to implement the government's liability of the launching state of space object under space-related treaties and national legislations, and to establish the standing as a strong space nation, Korea shall improve the space-related policy, laws and system as follows : Firstly, the legal system relating to the space development and the space activity shall be maintained. For this matter, the legal arrangement and maintenance shall be made to implement the government's policy and regulation relating to the space development and space activity. Also the legal system shall be maintained in accordance with the elements for consideration when enacting the national legislation relevant to the peaceful exploration and use of outer space adopted by UN COPUOS. Secondly, the liability system for the space damage shall be improved. For this matter, the articles relating to the liability for the damage and the right of claiming compensation for the expense already paid for the damage in case of the joint launch and consigned launch shall be regulated newly. Thirdly, the preservation policy for the space environment shall be established. For this matter, the consideration and preservation policy of the environment in the space development and use shall be established. Also the rule to mitigate the space debris shall be adopted. Fourthly, the international cooperation relating to the space activity shall be promoted. For this matter, the international cooperation obligation of the nation in the exploration and use of outer space shall be observed. Also through the international space-related cooperation, Korea shall secure the capacity of the space development and enter into the space advanced nation.

  • PDF