• Title/Summary/Keyword: 권취기

Search Result 30, Processing Time 0.035 seconds

Development of Automatic Velvet Take-up Machine with Location Control System for Woven (직물의 위치 제어가 가능한 자동 벨벳 권취기 개발)

  • 배한조;한성수;전순용
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.145-149
    • /
    • 2003
  • 벨벳 직물은 일반적인 직물과 달리 원단에 응모가 있어 보관 및 운반에 있어 각별한 주의가 요구되며 응모가 눌려지면 제품의 상품성이 상실되기 때문에 직물 표면의 형태를 유지하는 것이 매우 중요하다. 따라서 권취공정은 많은 주의가 요구되는 공정이다. 그러나 국내 벨벳 권취 업체들은 대부분 영세한 소규모 업체이고 전적으로 수 작업에 의해 작업을 진행하고있기 때문에 작업능률 저하 및 높은 불량률은 피할 수 없는 결과이다. (중략)

  • PDF

Development of the QOC Monitoring System in Downcoiler (권취기에서의 단차 회피 제어 감시 시스템)

  • 최용준;황원호;이영진;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.955-958
    • /
    • 2003
  • Strip top mark is one of the major problem areas in hot strip coiling operation. The key for good coiling is having a precise detection instrument of strip head end and an understanding of QOC(quick open control) control algorithm and mechanism. Therefore, this study aims at developing QOC monitoring system that is useful for avoiding strip top mark at coiling process. In this study, strip movement between mandrel and unit roll(wrapper roll) was thoroughly studied using high speed camera. The monitoring system was developed to calculate QOC open time and to estimate optimal open time values for good coiling operation. Its performance has been proven by extensive field tests on downcoiler of #2 Hot Strip Mill Line in Pohang Works.

  • PDF

Study for the dowincoiler's offline simulator (열연 권취기의 오프라인 시뮬레이터에 관한 연구)

  • Choi, Yong-Joon;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.65-72
    • /
    • 2006
  • Downcoiler is one of the major facilities in hot strip mill operation. The key to good coiling is having good equipment, modem control systems, excellent maintenance and an understanding of coiling process. Therefore, this study aims to develop a program that is useful for calculating machine design parameters and simulating coiling process. In this study, the pinching and coiling mechanism of the downcoiler was thoroughly studied and some of operational factors and their effects on the coiling process were investigated. The software was developed to estimate engineering parameters for coiler component design and to determine optimal setting values for successful coiling operation. In order to check the accuracy and usefulness of the developed software, the simulation of the downcoiler in $\#2$ Hot Strip Mill in Pohang Works was performed. The simulation results suggested that the set-up value for unit tension could be lowered. Test coiling operation by using the lowered set-up value for unit tension resulted in much more successful coiling in the aspect of strip quality and power consumption.

Development of a Kinematic Winding Control Algorithm for the Alternate Pirn (Alternate Pirn의 권취형상 제어를 위한 기구학적 제어 알고리즘 개발)

  • 최영휴;김광영;김종수;박대원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.413-418
    • /
    • 1996
  • Alternate pirn winding is more difficult to control than others because starting points of its traverse strokes are changed alternately through the winding operations. However, the alternate pirn winding is ye useful method because the yarn can be hardly broken when it is unwinded from full packaged bobbin. This paper presents kinematic control algorithm for the alternate pirn. The proposed algorithm can decide the values of control variables such as bobbin speed and traverse speed from the given input parameters and constraints by using the kinematic relations of the winding mechanism. The compute simulations and experimental verifications of the developed winding control algorithm are carried out It is concluded that the proposed algorithm is an efficient and reliable alternative to traditional trial and error control methods.

  • PDF

Non-linear PID Tension Control in a Winding Process with a Contact Roll and a Nip Roll (접압롤 및 보조닙롤이 있는 권취공정에서의 장력의 비선형 PID제어)

  • 신기현;김규태;천성민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.45-52
    • /
    • 1998
  • The contact roll is often used to regulate the winding tension as well as the entrained air in a wound roll by adjusting the contact force to the winding roll. But the contact force generated by other rolls, like assistant nip rolls, in a winding(or roll changing) process may act as disturbance to the control of the winding tension. In this paper, the mechanism of a roll change process is analysed. Ana, the behavior of the contact and the nip rolls are mathematically modeled. A nonlinear PID(NPID) controller is designed to control the winding tension and to reject the effect of disturbance generated by the nip roll on the winding tension variation. Computer simulation study showed that the performance of the suggested NPID controller is improved compared with that of the PID controller in controlling the winding tension and in rejecting the effect of the disturbance.

  • PDF

Non-linear tension control in a winding process with a contact roll and a nip roll (접압롤 및 보조롤이 있는 권취공정에서의 장력의 비선형 제어)

  • 신기현;김규태;천성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.748-753
    • /
    • 1996
  • The contact roll is often used to regulate the winding tension as well as the entrained air in a wound roli by adjusting the contact force to the winding roll. But the contact force generated by other rolls, like assistant nip rolls, in a winding(or roll changing) process may act as disturbance to the control of the winding tension. In this paper, the mechanism of a roll change process is analyzed. And, the behavior of the contact and the assistant nip rolls are mathematically modeled. A nonlinear PID(NPID) controller is designed to control the winding tension and to reject the effect of disturbance generated by the assistant nip roll on the winding tension variation. Computer simulation study showed that the performance of the suggested NPID controller is improved compared with that of the PID controller in con trolling the winding tension and in rejecting the effect of the disturbance.

  • PDF

Tension Control of a Winding Machine using Time-delay Estimation (시간 지연 추정 기법을 이용한 권취기의 장력 제어 알고리즘)

  • Heo, Jeong-Heon;You, Byungyong;Kim, Jinwook
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • We propose a tension controller based on a time-delay estimation (TDE) technique for a winding machine. Firstly, we perform the necessary calculations to derive a mathematical model of the winding machine. In this sense, it is revealed that the roll radius of the winding machine is characteristically seen to be increasing or decreasing during the winding process. That being said, it is noted that the parameters of the winding machine are coupled and constantly changing during this process. Understandably then, it is noted that the model is shown to be nonlinear and time-varying. Secondly, we propose the way to apply the TDE based controller which is the so-called Time-delay Control (TDC). The TDC utilizes the time-delayed information intentionally to compensate the nonlinear and time-varying characteristics. As we have seen, the proposed controller consists of two parts: one is a TDE component, and the other is an error dynamics component which is defined by a user. In a computer simulation based on the Matlab/Simulink program, the proposed controller is compared with a conventional PID controller, which is widely used in the tension control of the winding machine. The proposed controller reduces the incidence of overshoot and steady-state error in the tension control, as compared to the conventional PID controller.

Development of Rubber Sleeve for Reduction of End-mark in Cold Rolled Steel Sheet (고급강판용 엔드마크 감소를 위한 고무 슬리브의 개발)

  • Kim, Soon-Kyung;Kim, Dong-Keon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, a FEM analysis is undertaken of a rubber sleeve which is mounted onto a spreading mandrel so as to avoid marking the first wrappings of coils (known as the 'end-mark'), as occasionally occurs when a concentrated load is placed on the edge of a steel sheet, significantly reducing its quality. A commercial numerical package, ANSYS, was utilized to analyze the structural behavior of the rubber sleeve. In general, the strain of the sleeve increases as the thickness of the rubber layer (H) covering the tubes increases, thus also increasing the surface of the sleeve for a constant boundary condition, and decreasing the pitch (P) between each tube, resulting in an increase in the strain on the surface of the sleeve for all rubber thickness conditions tested here. In a comparison of two different materials, rubber and urethane, when H=3 mm and P=1.1D, the maximum total deformations in these cases are 0.12669 mm and 0.086623 mm, respectively.

A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films (탄소나노튜브 및 그래핀 나노플레이트 폴리프로필렌 복합재 필름 압출 및 물성 평가)

  • Kim, Byeong-Joo;Deka, Biplab K.;Kang, Gu-Hyuk;Hwang, Sang-Ha;Park, Young-Bin;Jeong, In-Chan;Choi, Dong-Hyuk;Son, Dong-Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Polypropylene films reinforced with multi-walled carbon nanotubes and exfoliated graphite nanoplatelets were fabricated by extrusion, and the effects of filler type and take-up speed on the mechanical properties and microstructure of composite films were investigated. Differential scanning calorimetry revealed that the addition of carbon nanomaterials resulted in increased degree of crystallinity. However, increasing the take-up speed reduced the degree of crystallinity, which indicates that tension-induced orientations of polymer chains and carbon nanomaterials and the loss of degree of crystallinity due to rapid cooling at high take-up speeds act as competing mechanisms. These observations were in good agreement with tensile properties, which are governed by the degree of crystallinity, where the C-grade exfoliated graphite nanoplatelet with a surface area of $750m^2/g$ showed the greatest reinforcing effect among all types of carbon nanomaterials used. Scanning electron microscopy was employed to observe the carbon nanomaterial dispersion and orientation, respectively.