• Title/Summary/Keyword: 굽힘강성

Search Result 222, Processing Time 0.024 seconds

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

Test Method for Composites Material Properties under High Temperature(I) (복합재의 고온 특성 평가를 위한 시험 기법연구(I))

  • Kil, Hyung-Bae;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of high-temperature on the flexural modulus of epoxy resin were evaluated using universal testing machine with 3-point bending and dynamic mechanical analyzer. Temperatures of $30^{\circ}C$, $100^{\circ}C$, and $140^{\circ}C$ were considered for flexural test. The specimens having aspect ratio of 16, 32, and 40 were used. The results of storage modulus from DMA were similar to those from flexural test along with given temperatures. It is found that the flexural modulus increased with increasing aspect ratio and the specimen having aspect ratio of above 32 would be suitable for the evaluation of composite material properties under high temperature condition.

  • PDF

Parametric Study on the Design of Sandwich Beams and Plates for Machine Tool Structures (공작기계를 위한 보와 평판의 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim, Dae-Il;Chang, Seung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2006
  • In this paper, polymer composites based sandwich structures like beams and plates are optimised by using parametric study. The structures are composed of fibre reinforced composites for facial material and resin concrete and PVC foam for core materials. The stacking sequences and thickness of the composites are controlled as major parameters to find out the optimal condition for machine tool components. For the plate structure of machine tool bed composites-skined sandwich structure which has several ribs are proposed to enhance bending stiffnesses in two major directions at the same time. Dynamic robustness of a machine tool structure is investigated using modal analysis. From the results optimal configuration and materials for high precesion machine tools are proposed. And the plate was made of fiber reforced composite material and PVC foam.

A Study on the Change of Hand of Chitosan-treated Fabrics(Part IV) (키토산으로 처리한 직물의 태의 변화에 관한 연구(제 4보))

  • 서한경;김종준
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.8
    • /
    • pp.1079-1089
    • /
    • 1998
  • Various fabrics, including natural fibers, regenerated cellulosic fibers, synthetic fibers, blend yarn, and mixture fabrics, were treated with the solutions of high purity chitosan in 1% acetic acid, having high viscosity of 930cps or low viscosity of 8cps. Physical/ mechanical properties of the treated fabrics samples were measured using Kawabata Evaluation System and drape tester. From these, hand values and total hand values of the fabric samples were calculated using Kawabata-Niwa translation equations. KOSHI, SHARI, HARI values have increased for the treated samples, while FUKURAMI values have decreased in general.

  • PDF

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.912-918
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

Bending Vibration Analysis of Rotating Multi-blade Systems Considering the Coupling Stiffness Effect (연성강성 효과를 고려한 회전하는 다중 블레이드 시스템의 굽힘진동 해석)

  • Lim, Ha-Seong;Kwon, Sung-Hun;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1354-1359
    • /
    • 2006
  • A modeling method for the vibration analysis of rotating multi-blade systems considering the coupling stiffness effect is presented in this paper. Blades are assumed as cantilever beams and the coupling stiffness effect originates from disc or shroud between blades. As the angular speed, hub radius ratio, and the coupling stiffness vary, the natural frequencies of the system vary. Numerical results show that the coupling stiffness is very important to estimate the natural frequencies. Along with the natural frequencies, associated mode shapes, critical angular speed, and critical hub radius ratio are obtained through the analysis.

  • PDF

Strength and Vibration Characteristic of Aluminum Honeycomb Sandwich Panel Structure (알루미늄 하니콤 샌드위치 패널구조의 강도 및 진동특성)

  • 배동명;최철은
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • The aluminum honeycomb sandwich panel (AHSP) structure not only have high flexural rigidity and strength per density but also excellence in vibration and noise properties. The AHSP structure are very useful for railway, airplane and high speed ship which need lighter-weighted and more strengthened elements. In this paper, from comparison the AHSP with the equivalent aluminum single plate (EASP) structure on the result of analysis, it was shown that the AHSP is S times lighter weight to the same stiffness than the EASP. And the AHSP structure have high bending rigidity and small shear rigidity in the direction of the thickness. Also, to the characteristics of vibration for the AHSP and EASP, which the stiffness is larger than the EASP, are higher than EASP.

Experimental Study on Dynamic Characteristics of Structurally Tailored Isotropic Box Beams (강성재단 된 등방성 박스보의 동적 특성에 관한 실험적 연구)

  • Kim, Kyoung-Duck;Kim, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.641-648
    • /
    • 2013
  • A beam is a major load-carrying member in many engineering structures. Beams with properly designed cross sections and stiffeners are required to enhance the structural properties. Such a design may cause various coupling behaviors, and therefore, an accurate analysis is essential for the proper design of beams. In this research, we manufactured box-beams with stiffeners, which mimic the out-of-plane composite bending-shear coupling behavior reported in literature. A modal test is carried out to obtain the dynamic characteristics, such as natural frequencies and mode shapes, of the box-beam. The obtained results are compared with those of 3D FEM, which confirm that the out-of-plane bending-shear coupling behavior reported in literature is possible. The coupling behavior can be controlled by the proper design of the stiffeners.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF