• Title/Summary/Keyword: 굵은 골재 최대 치수

Search Result 34, Processing Time 0.018 seconds

Fundamental Study on High Strength and High Durability Cement Concrete Pavement : Part I Optimum Mix Proportions (시멘트콘크리트 포장의 고강도 고내구성을 위한 기초 연구 : Part I 최적배합에 관한 연구)

  • Yun, Kyong-Ku;Park, Cheol-Woo
    • International Journal of Highway Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • Cement concrete pavement has become more common in Korean highway systems. However, as its service period increases, there are some technical problems occurs and no clear solution is available primarily due to the lack of active researches. This research, hence, aims to develop a new mix proportion that may provide better strength and durability with extended service life. Based on a variety of literature reviews, the experimental variables were determined as unit cement content, S/a ratio and W/C ratio. From the experimental works, it is recommended to increase the unit cement content up to 375kg/$m^3$, 400kg/$m^3$ and 425kg/$m^3$. The target slump and air content were set 40mm and 5%, respectively. The maximum size of coarse aggregate was decided to be 25mm because of the easiness of supply in the field. The reduction of W/C ratio was necessarily required and decreased to 0.4 which was proven not to cause any mixing problem with the increased unit cement contents along with polycarbon-based high range water reducing agent. In addition, it was known that the S/a ratio could be reduced to 0.34. The lowered S/a might be possible because of the increased cement paste and hence increased cohesiveness and workability.

  • PDF

Feasibility Evaluation of Number of Gyration for HMA and WMA Mixtures (HMA와 WMA 혼합물의 선회 다짐횟수 적정성 검토 연구)

  • Lee, Moon-Sup;Yoon, Chun-Joo;Kwon, Soo-Ahn;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.133-142
    • /
    • 2011
  • The objective of this study is to validate the number of gyrations of Superpave gyratory compactor(SGC) for compaction of hot-mix asphalt (HMA) and warm-mix asphalt(WMA) mixtures. Marshall compaction was also used for comparison purpose. The 13mm and 19mm aggregates of 1st class quality shape were used. A PG64-22 and a PG76-22 for HMA and a PG70-22 for WMA. Four compaction temperatures based on the suggested value were used for each binder using 100 gyrations for SGC and 75 blows per side for Marshall compactor. It was found that SGC compaction was somewhat better than Marshall compaction. The analysis of variance showed that two compactors were significantly different in air voids of 19mm mixtures at ${\alpha}=0.05$ level. The 13mm mixture did not show a significant statistical difference. When compacted at the temperature below a certain level, however, the compaction of two compactors were fond to be proor. Therefore, observing compaction temperature above the minimum level is important to secure proper compaction work. If the minimum temperatures were maintained, 100 gyrations, which was given for HMA of arterial road pavement by the Korean Guide, was found to be appropriate compaction, showing similar or better compaction work than 75 blows per side of Marshall compaction.

An Experimental Study on Mechanical Properties of Hybrid Fiber Reinforced Concrete Pavement (하이브리드 섬유로 보강된 콘크리트 포장의 역학적 특성 실험연구)

  • Park, Jong-Sup;Choi, Sung-Yong;Jung, Woo-Tai;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Cement concrete pavement offers long-term service life and excellent applicability for heavy traffic. It is easier to purchase and more durable and economical than the asphalt pavement. However, it is difficult to repair and rehabilitate compared to the asphalt pavement when it comes to the maintenance problem. Since the crack is the main reason of the damage of concrete pavement, it is necessary to control the early and long-term crack in the concrete pavement. In this experimental study, the basic performance tests have been carried out to investigate the effect of hybrid fibers which were composed of micro fibers with small diameter and high aspect ratio and macro fibers with large diameter and low aspect ratio on the concrete pavement, in which lower water ratio and larger aggregates were used compared to the general concrete mixture. The test results showed that the flexural strength and toughness of concrete pavement mixture have been increased with the use of hybrid fibers in the concrete pavement mixture, even though they were less effective compared to the normal concrete mixture. It was found that the hybrid fibers were effective to control the early shrinkage of the concrete pavement which is one of the main reasons of the damage in the concrete pavement.

Analysis of Influential Factors on Compressive Strength of Concrete Specimens Obtained from a Drilled Shaft Construction Site (현장타설말뚝 콘크리트 공시체 압축강도 데이터 분석을 통한 강도 영향인자 분석)

  • Lee, Kicheol;Chung, Moonkyung;Kim, So Yeun;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.37-47
    • /
    • 2015
  • Recently, the quality of drilled shafts concrete has been improved significantly due to the improved concrete performance, upgraded concrete materials, and better management of on-site constructions. Despite the development, current conventional quality management on concrete constructions is still used without any criticism. In this study, compressive strength test results of more than 200 concrete specimens after 7 and 28 days of curing were collected from one site at Songdo area of Incheon. The concrete specimens were prepared from the concrete with aggregate maximum dimensions of 25 mm, target compressive strength of 40 MPa, and slump of 180 mm. Influential factors including concrete temperature, air temperature, amount of slump, amount of air, amount of salinity on concrete specimen were also examined. The database was established from collected information and statistical analyses were performed. Analyzed results confirm that "the difference between concrete temperature and air temperature" has the largest impact on the compressive strengths of specimens at the durations of 7 and 28 days.