• Title/Summary/Keyword: 굵은골재 용적

Search Result 17, Processing Time 0.018 seconds

Effect of the Coarse Aggregate Volume by High Temperature Mechanical Properties of Ultra High Strength Concrete (굵은골재의 용적이 초고강도 콘크리트의 고온역학적특성에 미치는 영향)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong;Kim, Jung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.67-68
    • /
    • 2015
  • Recently, usage of ultra-high strengh concrete(UHSC) have been increased. Concrete has been recognized as a material which is resistant to high temperatures, but chemicophysical property of concrete is changed by the high temperature. So, mechanical properties of concrete may be reduced. Therefore, this study evaluated effect of the coarse Aggregate volume by high temperature mechanical properties of UHSC. Residual mechanical properties are evaluated under fine aggregate ratio 40,60% and 500℃ temperature on UHSC of W/B 15, 20%. As result, residual mechanical properties of UHSC are high by lower coarse aggregate volume.

  • PDF

Mechanical Properties of Recycled Coarse Aggregate concrete using Two-Stage Mixing Approach (TSMA 방법을 이용한 순환 굵은골재 콘크리트의 기계적 성능)

  • Kwon, Seung Jun;Lim, Hee Seob;Lee, Han Seung;Lim, Myung Kwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.60-67
    • /
    • 2018
  • As the lack of specific aggregation intensifies, the development of alternative resources is urgent. Construction waste is increasing every year, but recycled aggregate is used as a low value added material. Various studies are currently underway at the national level. In this paper, the mechanical performance of the concrete according to the concrete mixing method and the replacement amount of the circulating coarse aggregate was compared and evaluated. Concrete mixing method was normal mixing approach(NMA) method, two-stage mixing approach1 (TSMA1) method, two-stage mixing approach2 (TSMA2) method. Fresh concrete was tested for air content, slump test, and unit volume weight. Compressive strength and flexural strength were tested in hardened concrete. According to the TSMA method, the mechanical performance difference of concrete is shown, and the strength is decreased according to the circulating coarse aggregate replacement amount.

The Influence of Fineness Modulus of Pine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete (잔골재 조립률 및 굵은골재 입형이 초유동 콘크리트의 특성에 미치는 영향)

  • Jung Yong-Wook;Lee Seung-han;Yun Yong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.785-792
    • /
    • 2005
  • This study is to examine the influence of defective grain shape of coarse aggregate and lowered fineness modulus of fine aggregate on the characteristics of high flowing concrete. The flow ability and compact ability of high flowing concrete was examined using fine aggregate, varying its fineness modulus to 2.0, 2.5, 3.0, and 3.5, and coarse aggregate with before and after grain shape improvement. Also the influence of fineness modulus of fine aggregate and grain shape of coarse aggregate on dispersion distance of particles of aggregate was examined by relatively comparing the dispersion distance between particles of aggregate. According to the experimental result, minimum porosity when mixing fine aggregate and coarse aggregate was shown in order of fineness modulus of fine aggregate, 3.0, 2.5, 2.0, 3.5, regardless of the improvement of grain shape. So when the fineness modulus is bigger or smaller than KS Standard $2.3\~3.1$, the porosity increased. When the spherical rate of the grain shape of coarse aggregate unproved from 0.69, a disk shape to 0.78 sphere shape, the rate of fine aggregate, which represents minimum porosity, decreased $6\%$ from $47\%\;to\;41\%$. The 28 days compressive strength according to fineness modulus of fine aggregate increased about 3 ma as the fineness modulus increased from 2.0 to 2,5, and 3.0. However, the 28 days compressive strength decreased about 9 ma at 3.5 fineness modulus as compared with 3.0 fineness modulus. The improvement of grain shape in coarse aggregate and increase of fineness modulus in fine aggregate made the flow ability, compact ability, and V-rod flowing time improve. Also the fineness modulus of fine aggregate increased the paste volume ratio when a higher value was used within the scope of KS Standard $2.3\~3.1$.

An Experimental Study on the Properties of Concrete according to G/S ratio classified by Maximum Size of Coarse Aggregate (굵은골재 최대치수별 굵은골재/잔골재 용적비에 따른 콘크리트의 특성에 관한 실험적 연구)

  • Kim, Duk-Hyun;Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.97-103
    • /
    • 2004
  • In this study, the experiment was carried out to investigate and analyze the influence of coarse aggregate's mix ratio and maximum size on the properties of concrete. The main experimental variables were water/cement ratio 45% and 65%, coarse aggregate/fine aggregate ratio 90%, 130% and 170%, maximum size of coarse aggregate 15mm, 25mm and 40mm. According to the test results, the principal conclusions are summarized as follows. 1) The slump and flow of fresh concrete were found to be higher in the order of G/S ratio 170%, 130%, 90%, also in the order of maximum size 40mm, 25mm, 15mm. 2) The compressive strength of hardened concrete were found to be higher in the order of G/S ratio 170%, 130%, 90%, also in the order of maximum size 15mm, 25mm, 40mm.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.

Effect of Substituting Normal-Weight Coarse Aggregate on the Workability and Mechanical Properties of Heavyweight Magnetite Concrete (중량 자철석 콘크리트의 유동성 및 역학적 특성에 미치는 보통중량 굵은골재 치환율의 영향)

  • Mun, Jae-Sung;Mun, Ju-Hyun;Yang, Keun-Hyeok;Lee, Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.439-446
    • /
    • 2013
  • The objective of this study is to evaluate the workability and various mechanical properties of heavyweight magnetite concrete and examine the reliability of the design equations specified in code provisions. The main parameters investigated were the water-to-cement ratio and substitution level of normal-weight coarse aggregate (granite) for magnetite. The oven-dried unit weight of concrete tested ranged between 2446 and $3426kg/m^3$. The measured mechanical properties included compressive strength development, stress-strain curve, splitting tensile strength, moduli of elasticity and rupture, and bond stress-slip relationship of concrete. Test results revealed that the initial slump of heavyweight magnetite concrete increased as the substitution level of normal-weight coarse aggregate increases. The substitution level of normal-weight coarse aggregate had little influence on the compressive strength and tensile resistance capacity of heavyweight concrete, while it significantly affected the modulus of elasticity and stress-strain curves of such concrete. The design equations of ACI 349-06 and CEB-FIP provisions mostly conservatively predicted the mechanical properties of heavyweight magnetite concrete, but the empirical equations for modulus of elasticity and splitting tensile strength need to be modified considering the unit weight of concrete.

Mix Design of High Performance Concrete Using Maximum Density Theory (최대 밀도 이론을 이용한 고성능콘크리트의 배합 설계)

  • Lee, Seung-Han;Jung, Yong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In recent years the field application of high performance concrete has been increased to improve the quality and reliability of concrete structures. The mix design of the high performance concrete includes the 2 set-off mixture theory of mortar and coarse aggregate and that of paste and aggregate. The 2 set-off mixture theory of mortar and coarse aggregate has a problem of having to determine its value through repeated experiments in applying the rheological characteristics of mortar. The 2 set-off mixture theory of paste and aggregate has never been applied to high performance concrete since it doesn't take into account the relationship between optimum fine aggregate ratio and unit volume of powder nor does it consider the critical aggregate volume ratio. As the mixture theory of these high performance concretes, unlike that of general concrete, focuses on flowability and charge-ability, it does not consider intensity features in mix design also, the unit quantity of the materials used is determined by trial and error method in the same way as general concrete. This study is designed to reduce the frequency of trial and error by accurately calculating the optimum fine aggregate ratio, which makes it possible to minimize the aperture of aggregate in use by introducing the maximum density theory to the mix design of high performance concrete. Also, it is intended to propose a simple and reasonable mix design for high performance concrete meeting the requirements for both intensity and flowability. The mix design proposed in this study may reduce trial and error and conveniently produce high performance concrete which has self-chargeability by using more than the minimum unit volume of powder and optimum fine aggregate with minimum porosity.

Study on Performance Evaluation of Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로 산화슬래그 골재를 사용한 콘크리트의 성능 평가에 관한 연구)

  • Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • As the shortage of concrete aggregates is intensifying, the development of alternative resources is urgent. As the amount of steel slag increases year by year, attempts are being made to recycle slag into high-value-added products in order to develop an efficient resource recycling industry based on slag and to obtain economic benefits. However, the use of electric arc furnace oxidizing slag (EOS) as building materials is practically limited because it contains unstable materials. In this paper, physical properties of concrete were evaluated by using electric arc furnace slag aggregate. It has been produced with two levels of general strength area W / C 45% and high strength area W / C 30%. Fresh concrete has been tested in air content, flow and slump, unit weight. The properties of the cured concrete were investigated by compressive strength, bending strength and unit volume weight. As a result of this study, strength of concrete increased with increasing EOS aggregate mixture.

Physical and Mechanical Properties of Polymer Concrete Using Recycled Aggregate (재생골재를 사용한 폴리머 콘크리트의 물리·역학적 특성)

  • Sung, Chan-Yong;Baek, Seung-Chul
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • This study was performed to evaluate the physical and mechanical properties of polymer concrete using unsaturated polyester resin, initiator, heavy calcium carbonate, crushed gravel, recycled coarse aggregate, silica sand and recycled fine aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were decreased with increasing the content of recycled aggregate. The unit weight, compressive strength, flexural strength and dynamic modulus of elasticity were showed in $2,127{\sim}2,239kg/m^3$, 80.5~88.3MPa, 19.2~21.5MPa and $254{\times}10^2{\sim}288{\times}10^2MPa$ at the curing age 7 days, respectively. Therefore, these recycled aggregate can be used for polymer concrete.

  • PDF