• Title/Summary/Keyword: 굴착지수

Search Result 53, Processing Time 0.02 seconds

Correlation Between Drilling Parameter and Tunnel Support Pattern Using Jumbo Drill (도로터널에서 지보패턴별 굴착지수 상관관계 고찰)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.17-24
    • /
    • 2001
  • Four road tunnels of which the construction conditions were similar were selected in the paper, and laboratory tests and rockmass classification for the tunnels were carried out. And the analysis was performed to find out the correlation between ratio of bit abrasion or drilling parameter and support pattern of tunnel using jumbo drill machine. It was analyzed that there was average abrasion of bit from 11.85% to 3.25% per support patterns of tunnel in four tunnels. Drilling parameter happens to fluctuate according to extent of fracture zone.

  • PDF

Centriofuge Model Tests on Excavation Depth-Time-Displacement of Unpropped Diaphragm Walls (Diaphragm Wall에서 굴착깊이-시간-변위에 관한 원심모형실험)

  • Lee, Cheo-Keun;Aan, Kwang-Kuk;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.179-191
    • /
    • 2000
  • 본 연구에서는 화강토 지반상의 자립식 diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이비, 지하수위 및 굴착조건(연속 및 단계굴착)을 변화시키면서 원심모형시럼을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zine chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 의해 발생되는 지반의 변형괴 벽체의 변위 및 휨모멘트를 시간경과에 따라 측정하였다. 실험결과, 벽체의 근입깊이비가 증가함에 따라 벽체의 휨모멘트는 증가하는 반면, 굴착과정동안 배면측에서의 간극수압 감소속도는 감소하였다. 최종 굴착단계에서 굴착후 시간경과에 따른 침하량은 굴착과정중의 침하?에 비해 5~7% 정도를 나타내었다. 최대표면침하량과 벽체변위를 굴착깊이로 정규화한 결과 최대 침하량은 벽체 변위량의 0.8~1.2배9평균0.91배)사이에 분포하였다. 굴착깊이로 전규화한 벽체변위와 근입깊이와의 관계는 지수함수식으로 제안하였다. 파괴면은 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 퐈괴면의 각도는 66~72.5$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다.

  • PDF

Suggestions for Rock Classification in Blasting (발파와 관련된 암반분류에 대한 고찰)

  • 선우춘;신희순;류창하
    • Explosives and Blasting
    • /
    • v.20 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • 터널굴착이나 사면절취 등과 같은 굴착문제에 있어서 굴착방법을 결정하기 위해 대상암반에 대한 리핑암이나 발파암의 구분이 우선되며, 다음에 발파에 의한 굴착방법이 선정되었을지라도 화약량 및 종류, 천공방법 등 발파설계를 위해서 추가적으로 발파암에 대한 세부적인 분류가 필요하다. 일반적으로 RMR이나 Q시스템과 같은 암반분류법이 많이 사용되고 있지만, 발파암에 대한 표준적인 암반분류법이 없으며, 국내에서도 발파암 분류에 대한 연구가 거의 전무한 상태로 발파암의 분류요소로 사용될 수 있는 요소를 구하기 위한 연구가 필요하다. 따라서 이 논문에서는 앞으로 국내에서 발파암 분류연구에 대한 방향제시를 위해서 발파와 암석의 역학적 특성, 지질구조와 불연속면의 특성과의 관계나 굴착과 관련된 암반분류에 대한 여러 논문사례를 통하여 발파암의 분류요소와 분류방법 등에 대해 언급한다.

Methodology to Quantify Rock Behavior in Shallow Rock Tunnels by Analytic Hierarchy Process and Rock Engineering Systems (계층 분석적 의사결정과 암반 공학 시스템에 의한 저심도 암반터널에서의 암반거동 유형 정량화 방법론)

  • Yoo, Young-Il;Kim, Man-Kwang;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.465-479
    • /
    • 2008
  • For the quantitative identification of rock behavior in shallow tunnels, we recommend using the rock behavior index (RBI) by the analytic hierarchy process (AHP) and the Rock Engineering Systems (RES). AHP and RES can aid engineers in effectively determining complex and un-structured rock behavior utilizing a structured pair-wise comparison matrix and an interaction matrix, respectively. Rock behavior types are categorized as rock fall, cave-in, and plastic deformation. Seven parameters influencing rock behavior for shallow depth rock tunnel are determined: uniaxial compressive strength, rock quality designation (RQD), joint surface condition, stress, pound water, earthquake, and tunnel span. They are classified into rock mass intrinsic, rock mass extrinsic, and design parameters. An advantage of this procedure is its ability to obtain each parameter's weight. We applied the proposed method to the basic design of Seoul Metro Line O and quantified the rock behavior into RBI on rock fall, cave-in, and plastic deformation. The study results demonstrate that AHP and RES can give engineers quantitative information on rock behavior.

Elasto-plastic Analysis of Circular Tunnel with Consideration of Strain-softening of GSI Index (GSI 지수의 변형률 연화를 고려한 원형터널의 탄소성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.49-57
    • /
    • 2010
  • For the elasto-plastic analysis of a circular tunnel driven in a strain-softening rock mass subjected to a hydrostatic in-situ stress condition, this study suggests a convenient elasto-plastic analysis scheme which takes the strain-softening of GSI index into account and demonstrates its potential as a numerical tool in designing a circular tunnel. The suggested numerical scheme was developed by modifying the previous elasto-plastic procedure proposed by Lee & Pietruszczak(2008). With the assumption that GSI index of rock mass adjacent to the tunnel surface may be degraded due to the damage caused by the blasting and excavation, the concept of the strain-softening of GSI index was invoked. The concept provides a useful tool considering the strain-softening of the strength parameters appearing in the generalized Hoek-Brown criterion because these parameters can be evaluated empirically by use of GSI. In order to check the validity of the proposed scheme, the elasto-plastic analyses for circular tunnels were performed in various analysis conditions and the results were discussed.

Numerical Study on the Reduction of Blast-induced Damage Zone (최외곽공 주변암반의 발파굴착 손상영역 저감에 관한 수치해석적 연구)

  • Park, Se-Woong;Oh, Se-Wook;Min, Gyeong-Jo;Fukuda, Daisuke;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.25-33
    • /
    • 2019
  • Controlling the blast-induced damage zone(BDZ) in mining excavation is a significant issue for the safety of employees and the maintenance of facilities. Numerous studies have been conducted to accurately predict the BDZ in underground mining. This study employed the dynamic fracture process analysis (DFPA) to estimate the BDZ from a single hole blasting. The estimated BDZ were compared with the results obtained by Swedish empirical equation. The DFPA was also used to investigate the control mechanism of BDZ and fracture plane formation around perimeter holes for underground mining blasting.

Study on the Classification of Weak Rock by Test Blast (시험발파에 의한 연약암반 평가에 대한 연구)

  • 선우춘;전양수;천대성;한공창
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2003
  • The classification of weak rocks is normally connected with the rippability classifications. The excavation of rock is frequently carried out by blasting. A classification of the weak rocks by test blasting with small quantity of explosives was attempted in the present study. The crater ratio and blasting constant that resoled from test blasting were used as a e parameter of the classification. The seismic velocity of rock mass and Protodyakonov's index were also applied for the also rock classification.

Relationship between Rock Quality Designation and Blasting Vibration Constant "K" & Decay Constant "n" by Bottom Blasting Pattern (바닥발파에서 암질지수(RQD)와 발파진동상수 K, n의 관계)

  • 천병식;오민열
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.55-68
    • /
    • 1995
  • This paper is the analysis of the relationship between RQD and decay constant, blasting vi bration constant of cube root scaling and square root scaling, through experimental blast ins test in subway construction for excavation of shaft hole by bottom blasting. The magnitude of particle velocity is largely effected by the distance from blasting source, the maximum charge per delay and the properties of ground. In order to verify the effects of ground properties on blast-induced vibration, the relation-ship between magnitude of blasting vibration and Rock Quality Disignation which stands for joint property was studied. The results of test are verified that blasting vibration constant "K" and the absolute value("n") of decay constant relatively increse as RQD increased. According to the result, it can be predict the particle velocity by the blast -induced vibration in bottom blasting pattern.om blasting pattern.

  • PDF

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.113-129
    • /
    • 1999
  • In this study, a total of 12 types of sequential model tests were conducted at the laboratory for small scale anchored walls. The sequential behavior for flexible wall embedded in sand was investigated by varying degrees of relative density of Joomoonjin sand and flexibility number of model wall. The model tests were carried out in a 1000mm width, 1500mm length, and 1000mm high steel box. Load cells, pressure cells, displacement transducer and dial gauges were used to measure the anchor forces, lateral wall deflections, lateral earth pressures and vertical displacements of ground surface, respectively. Limited model tests were performed to examine the parameters for soil-wall interaction model and the formulation of analytical method was revised in order to predict the behavior of anchored wall in sand. Based on the model tests and proposed analytical method, model simulations were performed and the predictions by the present approach were compared with measurements by the model tests and predictions by other commercial programs. It is shown that the prediction by the present approach simulates qualitatively well the general trend observed for model test.

  • PDF

The prediction of deformation according to tunnel excavation in weathered granite (화강 풍화암지반의 터널굴착에 따른 변형예측)

  • Cha, Bong-Geun;Kim, Young-Su;Kwo, Tae-Soon;Kim, Sung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.329-340
    • /
    • 2010
  • Mechanical behavior of underground cavity construction such as tunnel is very difficult to estimate due to complexity and uncertainty of ground. Prediction of behavior according to excavation of tunnel mainly uses method utilized of model test or numerical analysis. But scale model test is difficult to reappear field condition, numerical analysis is also very hard to seek choice of suitable constituent model and input data. To solve this problem, this paper forecasted the deformation of tunnel that applied to information of crown settlement and convergence, RMR in weathered granite by using the regression analysis. The result of the analysis shows that the crown settlement according to excavation occurs approximately 70~80% of total displacements within about 20 days. As a result of the prediction of crown settlement and convergence, an exponential function becomes more accurate at measurements than an algebraic function. Also this paper got a correlation in comparison of RMR and displacements of 6 sections.