• Title/Summary/Keyword: 굴착공사

Search Result 478, Processing Time 0.03 seconds

Development of a Fleet Management System for Cooperation Among Construction Equipment (건설장비 협업을 위한 플릿관리 시스템 개발)

  • Ahn, Seo-Hyun;Kim, Sung-Keun;Lee, Kwan-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.573-586
    • /
    • 2016
  • In construction jobs, a combination of various kinds of machinery is used to perform earthworks at a large-scale site. Individual equipments essentially cooperate with each other on task such as excavation, load, transfer and compaction. While other area have studied cooperation system, related study in domestic construction is in poor condition. In this study, construction equipment fleet management system is developed for solving this problem and find way to improving efficiency in earthworks site. The entire concept of the fleet management system, including its components and process, has been systematically outlined in this paper. An operational methodology has also been suggested, where a number of machines, such as the excavators, trucks and compactors, are chosen and further grouped into a cluster. A case study verify fleet management system's effectiveness on performing task package by comparing existing work method with methodology in this study. Fleet management system in this study is expected to curtail fuel consumption by the reduction of working time and moving distance. Furthermore, it can be anticipated to declining carbon emission effect.

A Study on the Reinforcement and Environmental Impact of LW Injection (LW주입에 의한 지반보강 및 환경영향성에 관한 연구)

  • Chun, Byungsik;Do, Jongnam;Sung, Hwadon;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.121-131
    • /
    • 2006
  • This study is performed to examine the ground reinforcement effect and the environmental impact of LW injection, which is widely used during the excavation of high-rise apartment buildings. In addition, it proved that by conducting field exploration and laboratory test the engineering ground reinforcement effect of LW injection in the ground has low coefficient of permeability. The environmentally friendly aspect was evaluated through an assessment of environmental impact. The results of laboratory test shows that LW coagulating material with SC type soil structure has significant improvement of uniaxial compressive strength, increasing by three times and the shear strength increasing by twice, coefficient of permeability decreasing six to seven times. And the result of environmental impact tests show that from 6 hour after where the pH increases until 7.96 to initially it diminished, it started and to 80 hour after it recovered a pH 7.25 initially with 7.30. The chemical composition analysis test result that unpolluted water and polluted water hydrogen ion concentration (pH) show that the unpolluted water pH 7.36, polluted water pH 7.85, which is inside the Ministry of Environment standard of drinking water (the pH 5.8~8.5). The assessment of environmental impact and chemical analysis test also demonstrate that the LW coagulating material is environmentally friendly. In the $Cr^{6+}$ and the salinity detection test, it was proven that the salinity is slight and the $Cr^{6+}$ is not detected.

  • PDF

Study on Determination of Proper Pillar Width in Road Tunnel Design Stage (도로터널에서 적정한 필라폭 산정에 관한 연구)

  • Yang, Tae-Seon;Kim, Jae-Kyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.187-194
    • /
    • 2010
  • As the design of the pillar width (PW) of the parallel tunnels in downtown area, in which are located in plains zone with deep alluvium compared with mountain tunnels, is directly related with pre-compensation payment and costs of the underground area, it has to be planned as to keep minimum distance while securing the stability of the parallel tunnels. Although PW of downtown road tunnel in Korea is standardized as 1.5D(D: diameter of the tunnels), PW sometimes has to be reduced within 1.5D to adjust the tunnel lines to the city plan in the cases of the inlet and outlet of the tunnels. In this paper, the design and the analyses of optimum PW of the NATM type road tunnel in the downtown area are introduced. The relationship among the tunnel line planning and underground compensation fee, and ground characteristics are evaluated. In the determination of PW distance, the numerical analyses of underground road tunnels were performed, including the use of the strength decrease method and strength/stress ratio method. In the cases of inlet and outlet part of the tunnels where the stability of the pillars is poor due to contiguous construction of the parallel tunnels, the reinforcement methods are recommended for securing the stability. Numerical verification was performed for the reinforcement proposed.

Assesment of Load and Resistance Factored Design Value for PHC Driven Pile (PHC 항타말뚝의 하중저항계수 산정)

  • Park, Jong-Bae;Park, Yong-Boo;Lee, Bum-Sik;Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.279-286
    • /
    • 2013
  • Driving a prefabricated pile is the efficient construction method with low cost and excellent bearing capacity charateristics. But pile drinving method has often been changed to bored pile method with mechanical boring due to the unexpected problems occurred in the various domestic ground condition with landfill. So, pile driving method has more uncertainty than the Bored Pile method. This paper proposed LRFD design value which is one of limit states design method for the PHC driven pile used as building foundation to guarantee the reliable design with reduced uncertainty. This paper analysed 221 dynamic load test results(E.O.I.D : 93, Resrike : 128) and the different methods of estimating bearing design(Meyerhof method & SPT-CPT conversion method), and proposed LRFD value for each design reliability Index 2.33 and 3.0 for PHC driven pile. LRFD value of PHC driven pile represents 0.43~0.55 for Meyerhof method and 0.40~0.49 for SPT-CPT conversion method according to the deign reliability index.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

A Case Study on Electronic Recognition Sensor for Underground Facility Management System (지중 매설물 이력 관리 시스템 개발을 위한 전자인식기의 현장 적용성 검증 연구)

  • Jung, YooSeok;Kim, Soullam;Kim, Byungkon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.777-785
    • /
    • 2021
  • Many utility lines are buried underground to provide various functions of the city. Because historical records are not managed systematically, damage has occurred during excavation. In addition, the demand for an underground facility management system is increasing as the aerial underground project is progressing. By attaching an electronic recognition sensor to an underground facility, such as pipelines, the management history and site conditions can be carefully managed. Therefore, in this study, electronic recognition sensors, such as BLE Beacon, UHF RFID, geomagnetic sensor, and commercial marker, were tested to analyze the strengths, weaknesses, and field applicability through a pilot project. According to the limited research results collected through two pilot projects, the installation depth is most important to demonstrate the performance of the electronic reader. In addition, because it should be used in urban areas, the influence of environmental interference should be minimized, and there should be no performance degradation over time. In the case of the geomagnetic recognizer, the effect of environmental interference was large, and performance degradation occurred over time using the BLE Beacon. In the field situation, where the installation depth can be controlled to less than 40cm, the utility of the battery-free UHF RFID was the best.

Evaluation of the Standard Support Pattern in Large Section Tunnel by Numerical Analysis and Field Measurement (수치해석 및 현장계측에 의한 대단면 터널 표준지보패턴의 적정성 검증)

  • Byun, Yoseph;Chung, Sungrae;Song, Simyung;Chun, Byungsik;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.5-12
    • /
    • 2011
  • When choosing the support pattern of tunnel, the characteristics of rock are identified from the result of the surface geologic survey, boring, and geophysical prospecting and laboratory test. And a rock mass rating is classified and excavation method and standard support pattern are designed considering rock classification, domestic and international construction practices, numerical analysis. According to the revised design standard for tunnel, it was recommended to classify the rock mass rating for the design of tunnel into a rating based on RMR. If necessary, it proposed a flexible standard allowed applying more atomized the rock mass rating and Q-System. Also, the resonable verification of the support pattern must be accompanied because the factors affecting the structure and behavior of ground during the construction of tunnel are the main factors of uncertainty factors such as the nature of ground, ground water and the characteristics of structural materials. These days, such verification method is getting more specialized and diversified. In this study, the empirical method, numerical analysis and comparative analysis of in situ measurements were used to prove the reasonableness in the support pattern by RMR and Q-value on the Imha Dam emergency spillway.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Development of a Pavement Cutter for Eco-friendly Road Excavation Construction (친환경 도로굴착 시공을 위한 도로절단기 개발)

  • Kim, Kyoontai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.111-118
    • /
    • 2022
  • Recently, as underground facilities buried under roads in Korea are aging, the amount of underground facility maintenance work is rapidly increasing. For the maintenance and management of such underground facilities, the cutting work of the road pavement should be preceded. However, the conventional road pavement cutters used in Korea are not eco-friendly, and the reality is that they generate a lot of noise and cutting sludge (scattering dust). Therefore, in this study, the concept of the cutting sludge recovery device was derived, and an eco-friendly pavement cutter including this function was designed and manufactured. The developed equipment took about 20 to 30 seconds to cut 1m to a depth of 100 to 150mm. Also, the sludge suction performance was good in most sections, and the noise level of the equipment briefly measured at a distance of 2m was 82.7dB on average. However, due to the limitation that the developed equipment was at the level of the first prototype, the driving stability was somewhat low, and equipment abnormalities such as engine shutdown and sludge recovery performance decreased in some cases. The cutting performance and sludge recovery function will be more stable through tuning and improvement of the developed prototype in the future. In addition, we plan to quantitatively compare and analyze productivity by applying the improved prototype to actual field conditions.