• Title/Summary/Keyword: 굴진율

Search Result 66, Processing Time 0.027 seconds

Comparative Study of the Supervised Learning Model for Rate of Penetration Prediction Using Drilling Efficiency Parameters (시추효율매개변수를 이용한 굴진율 예측 지도학습 모델 비교 연구)

  • Han, Dong-Kwon;Sung, Yu-Jeong;Yang, Yun-Jeong;Kwon, Sun-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1032-1038
    • /
    • 2021
  • Rate of penetration(ROP) is one of the important variables for maximizing the drilling performance. In order to maximize drilling efficiency, it is necessary to increase the drilling speed, and real-time ROP prediction is important so that the driller can identify problems during drilling. The ROP has a high correlation with the drillstring rotational speed, weight on bit, and flow rate. In this paper, the ROP was predicted using a data-driven supervised learning model trained from the drilling efficiency parameters. As a result of comparison through the performance evaluation metrics of the regression model, the root mean square error(RMSE) of the RF model was 4.20 and the mean absolute percentage error(MAPE) was 9.08%, confirming the best predictive performance. The proposed method can be used as a base model for ROP prediction when constructing a real-time drilling operation guide system.

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

Study on the Seepage Forces Acting on the Tunnel Face with the Consideration of Tunnel Advance Rate (터널 굴진율을 고려한 막장에서의 침투력에 관한 연구)

  • 남석우;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.221-228
    • /
    • 2002
  • The stability of a tunnel face is one of the most important factors in tunnel excavation. Especially, if a tunnel is located under groundwater level, groundwater may flow into the tunnel face and seepage forces acting on the tunnel face due to groundwater flow may affect seriously the stability of the tunnel face. Therefore, the seepage pressure at the tunnel face should be considered fir the proper design and safe construction of a tunnel. In this paper, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was made. From this study, it was concluded that the tunnel advance rate must betaken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology fer the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for undetwater tunnels.

Investigation on Shape Effect of Rock Specimens to Uniaxial Compressive Strength and Modification of Performance Prediction Model of a Roadheader (일축압축강도에 미치는 암석시편의 형상효과 고찰 및 로드헤더 굴진율 예측모델 수정)

  • Kim, Mun-Gyu;Lee, Sang-Min;Cho, Jung-Woo;Choi, Sung-Hyun;Eom, Jun-Won
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.440-459
    • /
    • 2021
  • Roadheaders have begun to be adopted in Korean tunneling sites. The performance prediction models proposed by the manufacturer are used by Korean construction companies. The models use UCS (uniaxial compressive strength) value to predict the net cutting rate, but the rock specimens conducted for the uniaxial compression test have 1.0 of the diameter to length ratio. It has been reported that the specimen shape generally influences the rock strength. The previous references studying the shape effect were cited, and the UCS data of Korean rocks are also updated to analyze the shape effect on UCS. The cause of effect was discussed by previous theory. The change amount of UCS values of Korean rocks was estimated by the data, and the modified prediction model for NCR was finally suggested.

Analysis of Advanced Rate and Downtime of a Shield TBM Encountering Mixed Ground and Fault Zone: A Case Study (단층대와 복합지반을 통과하는 쉴드TBM의 굴진율 및 다운타임 발생 특성 분석)

  • Jeong, Hoyoung;Kim, Mincheol;Lee, Minwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.394-406
    • /
    • 2019
  • Difficult ground conditions (e.g., fault zone and mixed grounds) are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. TBM usually experienced decrease of penetration rate and increase of downtime when it meets these difficult ground conditions. The problems are usually caused by the adverse geological conditions, and it is preferable to determine the optimal operational parameters of TBM based on the previous operational data obtained while excavating a preceding tunnel. This study carried out for efficient TBM excavation in fault zone and mixed grounds. TBM excavation data from the tunnel site in Singapore and the characteristics of the TBM excavation data was analyzed. The key operational parameters (i.e., thrust, torque, and RPM), penetration rate, and downtime were highly influenced by the presence of fault zones and mixed grounds, and the features was discussed. It is expected that the results and main discussions will be useful information for future tunneling projects in similar geological conditions.

Relationship between brittleness index of hard rocks and TBM penetration rates (경암의 취성도와 TBM 순굴진율간의 관계)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Kyoung-Yul;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.611-634
    • /
    • 2017
  • In rapid urbanization, demand for utility tunnel increases more, and tunnel boring machine (TBM) has been used widely. Prediction of TBM penetration rate is important for proper estimation of construction period and cost. Although there are several methods, such as NTNU model and CSM model that require many input parameters, fundamental understanding on correlations between rock properties and TBM penetration rate is critical. In this study, we explored the brittleness indices of hard rocks according to various definitions, and the correlations between the brittleness indices and the TBM penentration rates.

The Study on the Verification of the Blasting Effect of Blast Stemming Material and Plug Device (발파전색재료 및 플러그 장치의 발파효과 검증 연구)

  • Ko, Young-Hun
    • Tunnel and Underground Space
    • /
    • v.32 no.4
    • /
    • pp.272-284
    • /
    • 2022
  • This study conducted tunnel blasting to evaluate the blasting effect of a shear thickening fluid-based blasting stemming material and a sealed plug device under development. STF single stemming and STF stemming materials were combined with plugs to a tunnel blasting to which the SAV-Cut method was applied, and the advanced rate and fragmentation of tunnel blasting muck pile were compared when sand stemming was used. Tunnel advanced rate was evaluated using a 3D laser scanner. When the STF stemming material and STF stemming material with the plug were compared to the sand stemming material, it increased by 5.7 and 5.36%, respectively. As a result of evaluation of the fragmentation of tunnel blasting muck pile, it was the best when the STF stemming material was applied, and it decreased by about 61% compared to the case of sand stemming blasting. However, no significant improvement in blasting effect was observed with the application of plug devices.

Analysis on Downtime element of Gripper TBM based on field data (현장 데이터 분석을 통한 Gripper TBM의 Downtime 요소 분석)

  • Park, Jinsoo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • The first TBM introduced in Korea was the gripper TBM, which was applied to the Gudeok Waterway Tunnel in 1985. In the initial stage of the introduction of the gripper TBM, many applications were mainly focused on waterway tunnels (Tunnel Mechanized Construction Design, 2008). Currently, the construction range of gripper TBM in Korea is widely applied to not only waterway tunnels, but also subways, railway tunnels, and TBM+NATM expansion. Overseas, gripper TBM is generally applied, and even when NATM tunnel is applied, it is applied as an exploration tunnel because of the excellent advance rate of gripper TBM and used as an evacuation tunnel after completion. Due to the fast excavation speed, the application of the gripper TBM in the rock section of weathered rock or higher can minimize the environmental and civil complaints caused by creating a large number of work areas when planning long tunnels or mountain tunnels. In this study, the work process of the general gripper TBM was analyzed by analyzing the construction cycle and the gripper TBM with a diameter of 2.6~5.0 m, which was applied the most in Korea. Downtime was investigated and analyzed.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A Study on Real-time Drilling Parameters Prediction Using Recurrent Neural Network (순환신경망을 이용한 실시간 시추매개변수 예측 연구)

  • Han, Dong-kwon;Seo, Hyeong-jun;Kim, Min-soo;Kwon, Sun-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.204-206
    • /
    • 2021
  • Real-time drilling parameters prediction is a considerably important study from the viewpoint of maximizing drilling efficiency. Among the methods of maximizing drilling, the method of improving the drilling speed is common, which is related to the rate of penetration, drillstring rotational speed, weight on bit, and drilling mud flow rate. This study proposes a method of predicting the drilling rate, one of the real-time drilling parameters, using a recurrent neural network-based deep learning model, and compares the existing physical-based drilling rate prediction model with a prediction model using deep learning.

  • PDF