• Title/Summary/Keyword: 굴곡계수

Search Result 80, Processing Time 0.022 seconds

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin (섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향)

  • Yu, Sang-Hui;Kim, Young-Im
    • Journal of dental hygiene science
    • /
    • v.10 no.6
    • /
    • pp.445-450
    • /
    • 2010
  • The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.

The Effect of Packing Method of Relining Material on the Flexural Strength of Denture Base Resin (첨상용 레진의 성형법이 의치상의 굴곡강도에 미치는 영향)

  • Kim, Min-Chul;Kim, Yu-Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.197-207
    • /
    • 2011
  • The study aimed at examining how different reline resins affect flexural strength and flexural modulus of denture base. A total of 80 specimens ($64{\times}10{\times}3.3$ mm, according to ISO 1567:1999) of heat-polymerized resin, 40 specimens for (Lucitone199(Dentsply Int., NewYork, USA), SR Ivocap(Ivoclar AG, Schaan, Liechtenstein)) respectively, were polymerized according to the manufacturer's instructions and divided into eight groups(n = 10). Control group specimens remained intact. Specimens in the other groups were abraded on both sides to 2 mm thickness, and were relined in 1.3 mm thickness with 3 types of resins (Lucitone199(Dentsply), SR Ivocap(Ivoclar), and Rebase II(Tokuyama Co., Ltd, Tokyo, Japan)). All specimens were preserved in distilled water at $37^{\circ}C$ for 50 hours, and then were subjected to flexural strength testing in a universal testing machine using 3-point loading. A crosshead speed of 5 mm/min was used, and the distance between the supports was 50 mm. Data analyses included one-way analysis of variance(ANOVA) and the Tukey Honestly Significant Difference test (p=.05). Both heat-polymerized resin groups and auto-polymerized resin groups showed statistically low flexural strength and flexural modulus than control groups. Specimens relined with Lucitone 199 showed significantly higher flexural strength and flexural modulus than those relined with SR-Ivocap. Specimens relined with auto-polymerized resin showed significantly lower flexural strength and flexural modulus than those relined with heat-polymerized resin. Relining with heat-polymerized resins showed superior mechanical properties to relining with an auto-polymerized resin. Relining with the same heat-polymerized resin as the denture base does not affect mechanical properties of a denture. Lucitone199 using a compression-mould technique resulted in the highest flexural strength.

CUSPAL DEFLECTION IN CLASS V CAVITIES RESTORED WITH COMPOSITE RESINS (5급 와동의 복합레진 수복 시 발생되는 교두굴곡에 관한 연구)

  • Park, Jun-Gyu;Lim, Bum-Soon;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.83-89
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of the polymerization shrinkage and modulus of elasticity of composites on the cusp deflection of class V restoration in premolars. The sixteen extracted upper premolars were divided into 2 groups with similar size. The amounts of cuspal deflection were measured in Class V cavities restored with a flowable composite (Filtek flow) or a universal hybrid composite (Z-250). The bonded interfaces of the sectioned specimens were observed using a scanning electron microscopy (SEM). The polymerization shrinkage and modulus of elasticity of the composites were measured to find out the effect of physical properties of composite resins on the cuspal deflection. The results were as follows. 1. The amounts of cuspal deflection restored with Filtek flow or Z-250 were $2.18\;{\pm}\;0.92{\mu}m$ and $2.95\;{\pm}\;1.13\;{\mu}m$, respectively. Filtek flow showed less cuspal deflection but there was no statistically significant difference (p > 0.05). 2. The two specimens in each group showed gap at the inner portion of the cavity. 3. The polymerization shrinkages of Filtek flow and Z-250 were 4.41% and 2.23% respectively, and the flexural modulus of elasticity of cured Filtek flow (7.77 GPa) was much lower than that of Z-250 (17.43 GPa). 4. The cuspal deflection depends not only on the polymerization shrinkage but also on the modulus of elasticity of composites.

Influence of airborne-particle abrasion on flexural strength of fiber-reinforced composite post (미세입자 분사마모 표면처리가 Fiber-Reinforced Composite 포스트의 굴곡 강도에 미치는 영향)

  • Sim, Eun-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • Purpose: Many studies have shown that airborne-particle abrasion of fiber post can improve the bonding strength to resin cement. But, airborne-particle abrasion may influence the property of fiber post. The purpose of this study is to evaluate the influence of airborne-particle abrasion on flexural strength of fiber post. Materials and Methods: Two fiber-reinforced posts; DT Light Post Size 2 (1.8 mm diameter, Bisco Inc) and RelyX Fiber Post Size 3 (1.9 mm diameter, 3M ESPE); were used in this study. Each group was divided into 3 subgroups according to different surface treatments; without pretreatment: $50{\mu}m$ aluminum oxide (Cobra$^{(R)}$, Renfert): and $30{\mu}m$ aluminum oxide modified with silica (Rocatec Soft$^{(R)}$, 3M ESPE). After airborne-particle abrasion procedure, three-point bending test was done to determine the flexural strength and flexural modulus. The diameter of each posts was measured to an accuracy of 0.01 mm using a digital micrometer. There was no diameter change before and after airborneparticle abrasion. The mean flexural moduli and flexural strengths calculated using the appropriate equations. The results were statistically analyzed using One-way ANOVA and Scheffe's post-hoc test at 95% confidencial level. Results: There was no significant difference on flexural strength between groups. Conclusion: In the limitation of this study, flexural strength and flexural modulus of fiber post are not affected by airborne-particle abrasion.

Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials (여러 레진계 치아고정 재료의 굴곡강도 및 탄성계수 비교)

  • Yoo, Je-In;Kim, Soo-Yeon;Batbayar, Bayarchimeg;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Purpose: Direct splinting material should have high flexural strength to withstand force during mastication and low modulus of elasticity to provide some movement while force applied for relief of stress. The purpose of this study was to compare flexural strength and modulus of elasticity of several resinous splinting materials. Materials and Methods: Four materials; Super-Bond C&B, G-FIX, G-aenial Universal Flo, FiltekTM Z350 XT; were used in this study. Fifteen rectangular bar specimens of each material were prepared. Three-point bending test were performed to determine physical properties. Maximum load at fracture was recorded and flexural strength and modulus of elasticity were calculated. One-way analysis of variance (ANOVA) and Scheffe's tests at a 0.05 level of significance were conducted on all test results. Results: Statistical analysis reveals that Super-Bond C&B had significant low mean value for flexible strength and the other three materials showed no significant difference. For modulus of elasticity, Super-Bond C&B exhibited statistically lower modulus of elasticity. G-FIX presented intermediate result, showing statistically higher modulus of elasticity than Super-Bond C&B but lower than G-aenial Universal Flo and FiltekTM Z350 XT. There was no significant difference on modulus of elasticity between G-aenial Universal Flo and FiltekTM Z350 XT. Conclusion: Using a G-FIX, the newly commercially available splinting material, which shows higher fracture resistance properties comparable to flowable and restorative composite resin and a relatively flexible nature might be a beneficial for stabilizing teeth mobility.

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Influence of water absorption on flexural strength and elastic modulus in several resinous teeth splinting materials (수분 흡수가 여러 레진계 치아고정 재료의 굴곡강도와 탄성계수에 미치는 영향)

  • Park, Bae-Young;Kim, Soo-Yeon;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.72-79
    • /
    • 2018
  • Purpose: The purpose of this study was to compare flexural strength and elastic modulus of several splinting materials dependent on water absorption. Materials and Methods: Three different materials; LightFix, G-FIX, G-aenial Universal Flo; were used in this study. Thirty rectangular bar specimens ($25{\times}2{\times}2mm$) of each materials were prepared. Fifteen specimens of each materials were stored in 100% relative humidity atmosphere, $37^{\circ}C$ for 24 hours. The other specimens were stored in distilled water, $37^{\circ}C$ for 30 days. Flexural strength and elastic modulus were calculated using Universal testing machine. One-way ANOVA and Scheffe's post hoc test at 95% level of significance were used on all test results. Results: In LightFix, flexural strength and elastic modulus were significantly decreased after aging. In G-FIX, there was no significant change in flexural strength and elastic modulus after aging. In G-aenial Universal Flo, flexural strength was significantly decreased, but elastic modulus did not change significantly. Statistical analysis reveals that flexural strength and elastic modulus increased in the order of LightFix, G-FIX, G-aenial Flo in both 24 hours and 30 days. Conclusion: It could be deduced from this study that flexural strength and elastic modulus of some resins could be changed when it aged in oral environment. Thus this should be considered when choosing a resin to perform a resin-bonded splint.

Effect of layer combinations with nanocomposite and low-shrinkage composite resins on their color and mechanical properties (나노복합레진과 저수축 복합레진의 복합 층으로 이룬 시편이 색과 물리적 성질에 미치는 영향)

  • Park, Wan-Ky;Choi, An-na;Son, Sung-Ae;Kwon, Yong Hoon;Kang, Eun-Sook;Park, Jeong-Kil
    • Korean Journal of Dental Materials
    • /
    • v.44 no.2
    • /
    • pp.129-139
    • /
    • 2017
  • This study investigated the colors and mechanical properties of layered dental composites. Four nanocomposite resins (Aelite LS, Grandio, Tetric EvoCeram, Filtek Z350XT) and a silorane-based composite resin (P90) were used for overlying and underlying materials, respectively, with different thickness combinations. Colors, translucency parameter (TP), flexural and compressive properties were evaluated. All tested specimens had different color coordinates, although all were of A3 shade. Color coordinates and TP values of layered specimens better matched those of the corresponding overlying product as the thickness of the overlying product was increased. High TP values were related with high $b^*$ value differences between specimens (p<0.05). Both flexural strength and modulus, compressive strength and modulus of layered specimens with different thickness combinations were mostly lower than those of the corresponding overlying products, respectively, in their non-layered state.

EDISON-CFD를 활용한 대형 트럭 디플렉터 형상에 따른 항력 감소 효과에 관한 연구

  • Park, Sang-Hyeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.1-3
    • /
    • 2016
  • 대형 화물 트럭(heavy-duty truck)은 화물 적재에 용이하지만, 공기역학적으로 불리한 형상을 가진다. 이러한 단점을 극복하고자 대형 화물 트럭에는 공기저항력(aerodynamic drag)을 줄일 수 있는 여러 가지 장치가 달려있다. 본 논문에서는 디플렉터(deflector) 형상이 항력 감소에 어떠한 영향을 주며, 평판 형태와 굴곡진 형태의 디플렉터 형상에 대한 항력 계수 비교를 EDISON-CFD를 활용하여 비교하였다. 해석 결과, 측풍(side-wind)의 영향을 무시하며 차량 속도 95 km/h로 등속을 유지하는 조건에서 평판 형태의 Model 1과 바깥으로 굴곡진 Model 2에서 전체 항력 계수가 낮게 나타났다.

  • PDF

Analysis of Drapability of Men's & Women's Suit Fabrics (남녀 수트직물의 드레이프성 분석)

  • Lee, Mee-Sik;Kim, Eui-Kyung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.12 s.159
    • /
    • pp.1723-1729
    • /
    • 2006
  • Drapability is an important factor determining the end-use of fabrics. In this research, characteristics of drapability of men's and women's suit fabrics were analyzed. The hand and the preference for suit fabrics were measured by the subjective and objective evaluations. To find out the details of the drapability characteristics of suit fabrics, the drape was measured by using Cusick drape tester and was processed by image analysis software. Seasonal difference was obvious both in men's and women's fabrics. The average drape ratio of women's S/S suit fabrics showed the highest value, 0.724, then decreased in the order of men's F/W> men's S/S> women's FW. Wave amplitude showed the same order to the drape ratio. Men's fabrics were more drapable in spring and summer season rather than in fall and winter season. Women's fabrics showed the opposite trend, in other words, S/S suit fabrics were less drapable than F/W fabrics. There was also a significant difference in drape ratio between men's and women's fabrics regardless of season. For S/S, men's fabrics were more drapable than women's ones, whereas, for F/W, women's fabrics were more drapable.