DOI QR코드

DOI QR Code

Influence of water absorption on flexural strength and elastic modulus in several resinous teeth splinting materials

수분 흡수가 여러 레진계 치아고정 재료의 굴곡강도와 탄성계수에 미치는 영향

  • Park, Bae-Young (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University School of Dentistry) ;
  • Kim, Soo-Yeon (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University School of Dentistry) ;
  • Kim, Jin-Woo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University School of Dentistry) ;
  • Park, Se-Hee (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University School of Dentistry) ;
  • Cho, Kyung-Mo (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University School of Dentistry)
  • 박배영 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 김수연 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 김진우 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 박세희 (강릉원주대학교 치과대학 치과보존학교실) ;
  • 조경모 (강릉원주대학교 치과대학 치과보존학교실)
  • Received : 2018.01.16
  • Accepted : 2018.04.22
  • Published : 2018.06.30

Abstract

Purpose: The purpose of this study was to compare flexural strength and elastic modulus of several splinting materials dependent on water absorption. Materials and Methods: Three different materials; LightFix, G-FIX, G-aenial Universal Flo; were used in this study. Thirty rectangular bar specimens ($25{\times}2{\times}2mm$) of each materials were prepared. Fifteen specimens of each materials were stored in 100% relative humidity atmosphere, $37^{\circ}C$ for 24 hours. The other specimens were stored in distilled water, $37^{\circ}C$ for 30 days. Flexural strength and elastic modulus were calculated using Universal testing machine. One-way ANOVA and Scheffe's post hoc test at 95% level of significance were used on all test results. Results: In LightFix, flexural strength and elastic modulus were significantly decreased after aging. In G-FIX, there was no significant change in flexural strength and elastic modulus after aging. In G-aenial Universal Flo, flexural strength was significantly decreased, but elastic modulus did not change significantly. Statistical analysis reveals that flexural strength and elastic modulus increased in the order of LightFix, G-FIX, G-aenial Flo in both 24 hours and 30 days. Conclusion: It could be deduced from this study that flexural strength and elastic modulus of some resins could be changed when it aged in oral environment. Thus this should be considered when choosing a resin to perform a resin-bonded splint.

목적: 본 연구의 목적은 수분 흡수가 여러 레진계 치아고정 재료의 굴곡강도와 탄성계수를 미치는 영향을 비교함으로써 물리적 성질에 대한 정보를 제공하는 것이다. 연구 재료 및 방법: 치아고정에 사용하는 레진으로 LightFix, G-FIX, G-aenial Universal Flo를 이용했다. 가로 25 mm, 세로 2 mm, 높이 2 mm의 시편을 각 재료당 즉시용 15개과 에이징용 15개를 제작했다. 즉시용은 $37^{\circ}C$, 100% 상대습도에 24시간 동안 보관됐고 에이징용은 30일 동안 $37^{\circ}C$, 증류수에 보관했다. 만능시험기를 이용해 굴곡강도와 탄성계수를 측정했고 independent t-test를 이용해 각 실험 재료의 24시간 군과 30일 군 간 비교를 했다. 실험재료 간의 비교는 one-way ANOVA test로 분석했고 95% 유의 수준으로 Scheffe's test를 이용해 사후 검정했다. 결과: 본 연구의 결과 LighFix군에서는 에이징 후에 굴곡강도와 탄성계수가 유의하게 감소했고 G-FIX군에서는 에이징 후에 굴곡강도와 탄성계수에 유의한 차이가 없었다. G-aenial Universal Flo군에서는 굴곡강도는 유의하게 감소했으나 탄성계수는 유의한 변화가 없었다. 한편 굴곡강도와 탄성계수는 24시간 군, 30일 군 모두 LightFix가 가장 낮은 수치, G-aenial Universal Flo가 가장 높은 수치를 보였다. 결론: 어떤 레진의 굴곡강도와 탄성계수는 구강환경에서 에이징시 변화할 수 있으므로 동요치 고정을 목적으로 레진을 선택할 때 이를 고려해야 한다.

Keywords

References

  1. Zhang Y, Xu J. Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J Mater Sci Mater Med 2008;19:2477-83. https://doi.org/10.1007/s10856-008-3369-6
  2. Sideridou ID, Achilias DS. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC. J Biomed Mater Res B Appl Biomater 2005;74:617-26.
  3. Yoo JI, Kim SY, Batbayar B, Kim JW, Park SH, Cho KM. Comparison of fexural strength and modulus of elasticity in several resinous teeth splinting materials. J Dent Rehabil Appl Sci 2016;32:169-75. https://doi.org/10.14368/jdras.2016.32.3.169
  4. Mazzoleni S, Meschia G, Cortesi R, Bressan E, Tomasi C, Ferro R, Stellini E. In vitro comparison of the fexibility of different splint systems used in dental traumatology. Dent Traumatol 2010;26:30-6. https://doi.org/10.1111/j.1600-9657.2009.00843.x
  5. Zhou M, Drummond JL, Hanley L. Barium and strontium leaching from aged glass particle/resin matrix dental composites. Dent Mater 2005;21:145- 55. https://doi.org/10.1016/j.dental.2004.02.009
  6. Drummond JL. Cyclic fatigue of composite restorative materials. J Oral Rehabil 1989;16:509-20. https://doi.org/10.1111/j.1365-2842.1989.tb01372.x
  7. Drummond JL, Khalaf MA, Randolph RG. In vitro ageing of composite restorative materials. Clin Mater 1988;3:209-21. https://doi.org/10.1016/0267-6605(88)90058-3
  8. Wu W, McKinney JE. Influence of chemicals on wear of dental composites. J Dent Res 1982;61: 1180-3. https://doi.org/10.1177/00220345820610101501
  9. Truong VT, Tyas MJ. Prediction of in vivo wear in posterior composite resins: a fracture mechanics approach. Dent Mater 1988;4:318-27. https://doi.org/10.1016/S0109-5641(88)80044-7
  10. Toledano M, Osorio R, Osorio E, Aguilera FS, Remeo A, de la Higuera B, García-Godoy F. Sorption and solubility testing of orthodontic bonding cements in different solutions. J Biomed Mater Res B Appl Biomater 2006;76:251-6.
  11. Sideridou I, Tserki V, Papanastasiou G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003;24:655-65. https://doi.org/10.1016/S0142-9612(02)00380-0
  12. Asaoka K, Hirano S. Diffusion coeffcient of water through dental composite resin. Biomaterials 2003;24:975-9. https://doi.org/10.1016/S0142-9612(02)00435-0
  13. Toledano M, Osorio R, Osorio E, Fuentes V, Prati C, García-Godoy F. Sorption and solubility of resin-based restorative dental materials. J Dent 2003; 31:43-50. https://doi.org/10.1016/S0300-5712(02)00083-0
  14. Da Fonte Porto Carreiro A, Dos Santos Cruz C, Vergani CE. Hardness and compressive strength of indirect composite resins: effects of immersion in distilled water. J Oral Rehabil 2004;31:1085-9. https://doi.org/10.1111/j.1365-2842.2004.01147.x
  15. International Organization for Standardization. Dentistry-Polymer-based restorative material. ISO 4049, 2009.
  16. de Melo Monteiro GQ, Montes MA. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites. Mat Res 2010;13:51-5. https://doi.org/10.1590/S1516-14392010000100012
  17. Hofmann N, Papsthart G, Hugo B, Klaiber B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding fexural strength, modulus and surface hardness. J Oral Rehabil 2001;28:1022-8. https://doi.org/10.1046/j.1365-2842.2001.00809.x
  18. Oysaed H, Ruyter IE. Composites for use in posterior teeth: mechanical properties tested under dry and wet conditions. J Biomed Mater Res 1986;20:261-71. https://doi.org/10.1002/jbm.820200214
  19. Dickens SH, Stansbury JW, Choi KM, Floyd CJE. Photopolymerization kinetics of methacrylate dental resins. Macromolecules 2003;36:6043-53. https://doi.org/10.1021/ma021675k
  20. Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent 2002;87:364-79. https://doi.org/10.1067/mpr.2002.123400
  21. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater 2006; 22:785-91. https://doi.org/10.1016/j.dental.2006.02.009
  22. Floyd CJ, Dickens SH. Network structure of Bis-GMA-and UDMA-based resin systems. Dent Mater 2006;22:1143-9. https://doi.org/10.1016/j.dental.2005.10.009
  23. Dewaele M, Truffier-Boutry D, Devaux J, Leloup G. Volume contraction in photocured dental resins: the shrinkage-conversion relationship revisited. Dent Mater 2006;22:359-65. https://doi.org/10.1016/j.dental.2005.03.014
  24. Gonçalves F, Kawano Y, Pfeifer C, Stansbury JW, Braga RR. Infuence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and fexural strength of experimental resins and composites. Eur J Oral Sci 2009;117:442-6. https://doi.org/10.1111/j.1600-0722.2009.00636.x
  25. Cook WD, Moopnar M. Influence of chemical structure on the fracture behaviour of dimethacrylate composite resins. Biomaterials 1990;11:272-6. https://doi.org/10.1016/0142-9612(90)90009-F
  26. Cekic-Nagas I, Egilmez F, Ergun G, Vallittu PK, Lassila LVJ. Load-bearing capacity of novel resin-based fxed dental prosthesis materials. Dent Mater J 2018:37:49-58. https://doi.org/10.4012/dmj.2016-367
  27. Drummond JL, Andronova K, Al-Turki LI, Slaughter LD. Leaching and mechanical properties characterization of dental composites. J Biomed Mater Res B Appl Biomater 2004;71:172-80.
  28. Geurtsen W. Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci 1998;106:687-95. https://doi.org/10.1046/j.0909-8836.1998.eos10602ii04.x
  29. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil 1994;21:441-52. https://doi.org/10.1111/j.1365-2842.1994.tb01158.x
  30. Moszner N, Salz U. New developments of polymeric dental composites. Prog Polym Sci 2001;26: 535-76. https://doi.org/10.1016/S0079-6700(01)00005-3

Cited by

  1. 법랑질 표면 처리방법에 따른 레진계 치아 고정재료의 접착강도 비교 vol.35, pp.2, 2018, https://doi.org/10.14368/jdras.2019.35.2.72