• Title/Summary/Keyword: 군집 자료

Search Result 1,192, Processing Time 0.027 seconds

Statistical Analysis of Clustered Interval-Censored Data with Informative Cluster Size (정보적군집 크기를 가진 군집화된 구간 중도절단자료 분석을 위한결합모형의 적용)

  • Kim, Yang-Jin;Yoo, Han-Na
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.689-696
    • /
    • 2010
  • Interval-censored data are commonly found in studies of diseases that progress without symptoms, which require clinical evaluation for detection. Several techniques have been suggested with independent assumption. However, the assumption will not be valid if observations come from clusters. Furthermore, when the cluster size relates to response variables, commonly used methods can bring biased results. For example, in a study on lymphatic filariasis, a parasitic disease where worms make several nests in the infected person's lymphatic vessels and reside until adulthood, the response variable of interest is the nest-extinction times. Since the extinction times of nests are checked by repeated ultrasound examinations, exact extinction times are not observed. Instead, data are composed of two examination points: the last examination time with living worms and the first examination time with dead worms. Furthermore, as Williamson et al. (2008) pointed out, larger nests show a tendency for low clearance rates. This association has been denoted as an informative cluster size. To analyze the relationship between the numbers of nests and interval-censored nest-extinction times, this study proposes a joint model for the relationship between cluster size and clustered interval-censored failure data.

The Analysis of the Herding Behavior of Korean Institutional Investors: Evidence from the Intraday (일중거래자료를 사용한 기관투자자 군집거래의 분석)

  • Lee, Jae-Hyun;Lee, Ho-Sun
    • Management & Information Systems Review
    • /
    • v.32 no.3
    • /
    • pp.83-105
    • /
    • 2013
  • There are many literatures about the herding behavior of institutional investors but there is lack of literatures about the relation among several investor groups consisting of institutional investors. So we investigate the relation among sub-institutional investor groups like bank, insurance companies, pension funds using KRX intraday trading data of 2009. As the result, we find that foreign, individual, and securities firm investors trade in the opposite direction of other investor groups including pension funds. And pension, insurance, asset management, private equity funds, other companies, government, and banks are cross-mimicking each other, so we conclude that these investors make herding behavior. In 2009 institutional investors except securities firms make herding in a short period, and insurance, asset management, pension funds and other companies make herding and self-mimicking in all period, but there is no herding and mimicking after foreign investors.

  • PDF

Classification by Clustering Analysis for Watersheds Measuring Sediment Yield (유사량 측정 유역 군집분석에 따른 분류)

  • Shin, Seung Sook;Park, Sang Deog;Park, Sangyeon;Yun, Minu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.114-114
    • /
    • 2017
  • 하천의 유사량 자료는 하상변동 예측, 저수지 퇴사량 추정, 유사조절 계획 수립 등 유역과 하천관리 그리고 하천 시설물 관리를 위해 필요하다. 최근 4대강 사업구간에 대한 담수용 보로 유입되는 유사량과 하천 유사의 종횡단적 분포와 하상변동량 등의 산정에 기초자료로 활용하고자 유사량 관측망이 구축되어 있다. 본 연구에서는 하천 유사량에 영향을 미치는 유역특성인자에 대한 군집분석을 통해 유사 발생 유역을 분류하고자 한다. 체계화된 유량 및 유사량 측정 방법에 의해 신뢰할만한 유량-총유사량 관계식을 갖는 유량조사사업단의 35개 유역을 대상으로 한다. 유역 군집분석을 수행하고자 유역과 하천에 대한 지형인자, 토양인자, 토지이용 등의 유역특성 매개변수 자료를 수집하였고, 매개변수별 유사도거리 산정에 오류를 줄이기 위해 매개변수를 무차원화 하였다. 유역의 비유사량은 유역면적, 유역경사, 토성, 토지이용 등에 영향을 받았다. K-means 기법에 의해 군집분석을 수행한 결과 유사량 측정 유역은 A, B, C, D 4개의 그룹으로 분류되었다. B그룹 유역은 첨두홍수량이 크고 발생시간이 짧은 유역 및 하천 조건을 가지고 있었으며, 직접유출이 증가하는 지표조건과 침식이 활발한 토양조건을 갖는 것으로 파악되었다. 그룹별로 실측 비유사량을 검토한 결과 B그룹에 포함된 유역의 유사량이 다른 유역에 비해 상대적으로 크게 발생하였다. 이러한 결과는 유역특성 매개변수의 군집분석을 통한 유역의 군집분류가 유역과 하천의 유사관리 측면에서 유용한 관리방안으로 활용될 수 있음을 의미한다.

  • PDF

Time series clustering for AMI data in household smart grid (스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구)

  • Lee, Jin-Young;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.791-804
    • /
    • 2020
  • Residential electricity consumption can be predicted more accurately by utilizing the realtime household electricity consumption reference that can be collected by the AMI as the ICT developed under the smart grid circumstance. This paper studied the model that predicts residential power load using the ARIMA, TBATS, NNAR model based on the data of hour unit amount of household electricity consumption, and unlike forecasting the consumption of the whole households at once, it computed the anticipated amount of the electricity consumption by aggregating the predictive value of each established model of cluster that was collected by the households which show the similiar load profile. Especially, as the typical time series data, the electricity consumption data chose the clustering analysis method that is appropriate to the time series data. Therefore, Dynamic Time Warping and Periodogram based method is used in this paper. By the result, forecasting the residential elecrtricity consumption by clustering the similiar household showed better performance than forecasting at once and in summertime, NNAR model performed best, and in wintertime, it was TBATS model. Lastly, clustering method showed most improvements in forecasting capability when the DTW method that was manifested the difference between the patterns of each cluster was used.

Clustering Weather Data for Study of Local Distinction (기상자료 군집화를 통한 지형적 특성 연구)

  • Kim, Min-Jin;Lee, Il-Byeong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.412-415
    • /
    • 2008
  • 매일 쏟아져 나오는 방대한 양의 기상자료는 현재의 대기상태를 대표하기도 하지만 그 지역의 지형적 특성을 나타내고 있다. 이번 연구는 수원지역의 일일 기상자료를 토대로 지형적 특성과 그에 따른 기상현상(바람, 안개)알고자 한다. K-means를 이용 특정 기상현상끼리 군집화하여 지형적 특성과 비교하였다.

  • PDF

Study on Scaling Exponent for Classification of Regions using Scaling Property (스케일 성질을 이용한 군집 지역에서의 스케일 인자에 대한 연구)

  • Jung, Younghun;Kim, Sunghun;Ahn, Hyunjun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.504-504
    • /
    • 2015
  • 수공구조물을 설계하기 위해서는 설계수문량을 빈도해석을 통해 산정할 수 있다. 빈도해석 중 지점빈도해석을 보완한 지역빈도해석을 적용하기 위해서는 군집분석을 통한 지역구분이 무엇보다 중요하다. 또한 스케일 성질(scaling property)은 강우의 시 공간적 특성을 지속기간별 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 강우의 IDF곡선을 제시할 수 있는 방법이다. 따라서 스케일 성질을 통해 군집된 지역에서의 강우자료에 적용하여 스케일 인자(scaling exponent)를 추정한 후 수문학적 동질성을 통계적 특성으로 설명하고자 한다. 본 연구를 수행하기에 앞서 군집 분석은 4개의 군집방법(평균연결법, Ward방법, Two-Step방법, K-means방법)을 적용하였고, 한강유역에 위치한 104개의 강우지점은 4개의 지역으로 구분하는 것이 적절하다고 판단되어 비계층적 방법인 k-means방법을 이용하여 지역을 구분하였다. 본 연구에서는 군집된 결과를 바탕으로 4개의 지역으로 구분된 지역에 포함된 강우지점을 대상으로 스케일 인자를 추정하고 수문학적 동질성을 통계적 방법으로 제시하고자 한다.

  • PDF

Group Classification on Management Behavior of Diabetic Mellitus (당뇨 환자의 관리행태에 대한 군집 분류)

  • Choi, Soon-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.759-762
    • /
    • 2010
  • 본 연구는 당뇨인지환자들의 당뇨 조절에 관계되는 요인들을 포괄적으로 반영하는 집단으로 분류한 후 이를 기반으로 보다 효율적인 당뇨관리사업을 할 수 있는 기초자료를 제공하기 위해 수행되었다. 연구를 위해 2007년, 2008년도 국민건강영양조사를 통해 검진에 참여한 당뇨인지환자 666명의 자료를 수집하여 분석하였다. 당뇨인지환자의 관리행태에 대한 군집분류는 K-means 기법을 이용하였다. 당뇨인지환자의 군집은 건강행태사업 대상군, 중점관리사업 대상군, 합병증검사사업 대상군으로 분류되었다. 당뇨 조절율을 높이기 위해서는 각 군집의 특성에 따라 보다 특화된 당뇨관리 프로그램이 적용되어야 할 것이다.

  • PDF

Identification of Cluster with Composite Mean and Variance (합성된 평균과 분산을 가진 군집 식별)

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.391-401
    • /
    • 2011
  • Consider a cluster, so called a 'son cluster', whose mean and variance is composed of the means and variances of both clusters called as a 'father cluster' and a 'mother cluster'. In this paper, a method for identifying each of three clusters is provided by modeling the relationship with father and mother clusters. Under the normal mixture model, the parameters are estimated via EM algorithm. We were able to overcome the problems of estimation using ECM approximation. Numerical examples show that our method can effectively identify the three clusters, so called a 'family of clusters'.

Variational Autoencoder Based Dimension Reduction and Clustering for Single-Cell RNA-seq Gene Expression (단일세포 RNA-SEQ의 유전자 발현 군집화를 위한 변이 자동인코더 기반의 차원감소와 군집화)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1512-1518
    • /
    • 2021
  • Since single cell RNA sequencing provides the expression profiles of individual cells, it provides higher cellular differential resolution than traditional bulk RNA sequencing. Using these single cell RNA sequencing data, clustering analysis is generally conducted to find cell types and understand high level biological processes. In order to effectively process the high-dimensional single cell RNA sequencing data fir the clustering analysis, this paper uses a variational autoencoder to transform a high dimensional data space into a lower dimensional latent space, expecting to produce a latent space that can give more accurate clustering results. By clustering the features in the transformed latent space, we compare the performance of various classical clustering methods for single cell RNA sequencing data. Experimental results demonstrate that the proposed framework outperforms many state-of-the-art methods under various clustering performance metrics.

Efficient water resource management using cluster and trend analysis for each rainfall station (강우 관측소별 군집 및 경향성 분석을 활용한 효율적인 수자원 관리)

  • Won-joon Wang;Seong Cheol Shin;Yu Jin Kang;Seungmin Lee;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.115-115
    • /
    • 2023
  • 최근 기후변화의 영향으로 국내에서 강우량과 유출량의 변동성이 커짐에 따라 효율적으로 수자원을 관리하는 데 어려움을 겪고 있다. 따라서 수자원 관리 측면에서 강우관측소를 대상으로 군집 분석과 경향성 분석을 통해 사전에 강우 시계열 자료의 추세와 특징을 파악하면 용수 공급과 가뭄 및 홍수피해 저감 등에 효과적으로 대처할 수 있다. 본 연구에서는 2000년부터 2019년까지낙동강 유역의 64개 강우관측소를 대상으로 동질성 검정과 수정 Mann-Kendall (MK) 검정을 적용하여 강우 시계열 자료의 월별, 계절별, 연도별 경향성 분석을 수행하였다. 또한, 경향성이 나타나는 관측소별 세부지표(연평균 강우량, 표고 등)를 기준으로 K-means 군집 분석을 수행하여 군집별 강우 특성을 파악하고자 하였다. 분석을 수행한 결과 경향성 분석에선 3월, 4월, 11월, 12월, 봄 및 가을에는 강우량이 증가 추세를 보였고 1월, 5~9월, 여름과 연도별로는 감소 추세가 나타났다. 또한 군집 분석에서는 Silhouette analysis를 기반으로 최적의 군집 개수를 3개로 설정했을 때 군집별 강우 세부지표의 통계값이 관측소별 표고에 비례하는 특징이 나타났다. 연구를 통해 도출된 군집별 강우 특성과 관측소별 경향성 분석결과를 연계하면 강우량의 변동성을 고려한 효율적인 수자원 관리 방안을 마련하는 데 활용할 수 있을 것으로 판단된다.

  • PDF