• Title/Summary/Keyword: 군집 무인항공기

Search Result 9, Processing Time 0.027 seconds

IT Convergence UAV Swarm Control for Aerial Advertising (공중 광고를 위한 IT 융합 무인항공기 군집 제어)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • As the price of small UAVs is getting cheaper and its controllability is getting greatly increased, many aerial applications using both fixed-wing and hoverable UAVs have appeared in recent years. In this paper, a new aerial advertising method is proposed using four hoverable UAVs. Using the UAV swarm control method, four UAVs are maneuvered to carry a $7.07{\times}7.07m^2$ square banner along collision-free and predefined waypoints for aerial advertising. According to simulation results, it takes about 270 s for UAVs to perform aerial advertising in $669{\times}669m^2$ size area and the minimum distance among UAVs turns out to be 0.45 m which proves there is no any collision. Due to abrupt direction changes of UAVs along the predefined waypoints, UAVs cannot always maintain exact square formation and it results the maximum and minimum side lengths of square formation to be 10.35 m and 1.96 m, respectively. Also, the maximum and minimum diagonal lengths of square formation turn out to be 14.75 m and 2.78 m, respectively.

Development of UAV Cluster Flight Simulation and Altitude Layer based on Gazebo (Gazebo 기반 UAV 군집 비행 시뮬레이션 개발 및 비행 고도 계층화 개발)

  • Choi, Hyo Hyun;Kim, Eung Bin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.271-272
    • /
    • 2021
  • 본 논문에서는 Gazebo 시뮬레이터 기반 UAV 군집 시뮬레이션 구현 및 비행 고도 계층화를 구현한 결과를 보인다. Gazebo 시뮬레이션과 Autopilot Program인 Pixhawk4 SITL(Software In The Loop)을 이용하여 UAV를 시뮬레이터에 생성한 뒤 사전에 정의된 Mission에 대한 정보에 따라 비행이 되도록 구현하였다. 또한, Gazebo 시뮬레이터의 Box Object를 이용하여 UAV의 비행 고도를 시각적으로 계층화하여 표현하였다.

  • PDF

Security Treats and Countermeasures in Drone Operation (드론 운용의 보안 위협과 대응 방안)

  • Ryu, Hae-Won;Choi, Sung-Han;Ha, Il-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.170-173
    • /
    • 2018
  • 최근 무인항공기는 국내뿐만 아니라 전 세계적으로 활용에 대한 관심이 높아지며 다양한 분야에서 사용되고 있다. 드론은 독립적으로 외부로부터 정보를 수집하는 임무를 수행하거나, 군집을 이루어 데이터를 주고받으며 특정한 임무를 수행하게 된다. 지금까지의 드론에 관한 연구는 신속하고 정확한 임무의 수행에만 초점을 두어왔고, 드론 자체 또는 드론 군집에서 주고받는 데이터의 보안과 안전에 관한 연구는 비교적 소홀히 다루어져 왔다. 따라서 본 연구는 드론 운용에 있어서 구성요소별 보안 취약점을 분석하고 취약점을 해결할 수 있는 대응방안을 설명한다. 특히 드론의 가장 중요한 임무 중 하나인 지상의 목표물 탐색에 있어서 발생할 수 있는 보안위협 요소와 이에 대한 해결방안을 제시한다.

Super-Pixel-Based Segmentation and Classification for UAV Image (슈퍼 픽셀기반 무인항공 영상 영역분할 및 분류)

  • Kim, In-Kyu;Hwang, Seung-Jun;Na, Jong-Pil;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Recently UAV(unmanned aerial vehicle) is frequently used not only for military purpose but also for civil purpose. UAV automatically navigates following the coordinates input in advance using GPS information. However it is impossible when GPS cannot be received because of jamming or external interference. In order to solve this problem, we propose a real-time segmentation and classification algorithm for the specific regions from UAV image in this paper. We use the super-pixels algorithm using graph-based image segmentation as a pre-processing stage for the feature extraction. We choose the most ideal model by analyzing various color models and mixture color models. Also, we use support vector machine for classification, which is one of the machine learning algorithms and can use small quantity of training data. 18 color and texture feature vectors are extracted from the UAV image, then 3 classes of regions; river, vinyl house, rice filed are classified in real-time through training and prediction processes.

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.

Fast Video Data Encryption for Swarm UAVs Using Hybrid Crypto-system (하이브리드 암호시스템을 이용한 군집 영상의 고속 암호화)

  • Cho, Seong-Won;Kim, Jun-Hyeong;Chae, Yeo-Gyeong;Joung, Yu-Min;Park, Tae-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.602-609
    • /
    • 2018
  • This paper proposes the hybrid crypto-system for fast video data encryption of UAV(Unmanned Aerial Vehicle) under the LTE(Long-Term Evolution) wireless communication environment. This hybrid crypto-system is consisted of ECC(Elliptic Curve Cryptography) public key algorithm and LEA(Light-weight Encryption Algorithm) symmetric key algorithm. ECC is a faster public key algorithm with the same security strength than RSA(Rivest Shamir Adleman), and Korean standard LEA with the same key size is also a faster symmetric key algorithm than AES(Advances Encryption Standard). We have implemented this hybrid crypto-system using OpenSSL, OpenCV and Socket programs under the Swarm 8-UAV. We have shown the efficient adaptability of this hybrid crypto-system for the real-time swarm UAV through the experiments under the LTE communication environment.

Evaluation of Clustered Building Solid Model Automatic Generation Technique and Model Editing Function Based on Point Cloud Data (포인트 클라우드 데이터 기반 군집형 건물 솔리드 모델 자동 생성 기법과 모델 편집 기능 평가)

  • Kim, Han-gyeol;Lim, Pyung-Chae;Hwang, Yunhyuk;Kim, Dong Ha;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1527-1543
    • /
    • 2021
  • In this paper, we explore the applicability and utility of a technology that generating clustered solid building models based on point cloud automatically by applying it to various data. In order to improve the quality of the model of insufficient quality due to the limitations of the automatic building modeling technology, we develop the building shape modification and texture correction technology and confirmed the resultsthrough experiments. In order to explore the applicability of automatic building model generation technology, we experimented using point cloud and LiDAR (Light Detection and Ranging) data generated based on UAV, and applied building shape modification and texture correction technology to the automatically generated building model. Then, experiments were performed to improve the quality of the model. Through this, the applicability of the point cloud data-based automatic clustered solid building model generation technology and the effectiveness of the model quality improvement technology were confirmed. Compared to the existing building modeling technology, our technology greatly reduces costs such as manpower and time and is expected to have strengths in the management of modeling results.

Automatic Generation of Clustered Solid Building Models Based on Point Cloud (포인트 클라우드 데이터 기반 군집형 솔리드 건물 모델 자동 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1349-1365
    • /
    • 2020
  • In recent years, in the fields of smart cities and digital twins, research on model generation is increasing due to the advantage of acquiring actual 3D coordinates by using point clouds. In addition, there is an increasing demand for a solid model that can easily modify the shape and texture of the building. In this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. Accordingly, in this paper, we propose a method to create a clustered solid building model based on point cloud data. The proposed method consists of five steps. In the first step, the ground points were removed through the planarity analysis of the point cloud. In the second step, building area was extracted from the ground removed point cloud. In the third step, detailed structural area of the buildings was extracted. In the fourth step, the shape of 3D building models with 3D coordinate information added to the extracted area was created. In the last step, a 3D building solid model was created by giving texture to the building model shape. In order to verify the proposed method, we experimented using point clouds extracted from unmanned aerial vehicle images using commercial software. As a result, 3D building shapes with a position error of about 1m compared to the point cloud was created for all buildings with a certain height or higher. In addition, it was confirmed that 3D models on which texturing was performed having a resolution of less than twice the resolution of the original image was generated.

A method for localization of multiple drones using the acoustic characteristic of the quadcopter (쿼드콥터의 음향 특성을 활용한 다수의 드론 위치 추정법)

  • In-Jee Jung;Wan-Ho Cho;Jeong-Guon Ih
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.351-360
    • /
    • 2024
  • With the increasing use of drone technology, the Unmanned Aerial Vehicle (UAV) is now being utilized in various fields. However, this increased use of drones has resulted in various issues. Due to its small size, the drone is difficult to detect with radar or optical equipment, so acoustical tracking methods have been recently applied. In this paper, a method of localization of multiple drones using the acoustic characteristics of the quadcopter drone is suggested. Because the acoustic characteristics induced by each rotor are differentiated depending on the type of drone and its movement state, the sound source of the drone can be reconstructed by spatially clustering the results of the estimated positions of the blade passing frequency and its harmonic sound source. The reconstructed sound sources are utilized to finally determine the location of multiple-drone sound sources by applying the source localization algorithm. An experiment is conducted to analyze the acoustic characteristics of the test quadcopter drones, and the simulations for three different types of drones are conducted to localize the multiple drones based on the measured acoustic signals. The test result shows that the location of multiple drones can be estimated by utilizing the acoustic characteristics of the drone. Also, one can see that the clarity of the separated drone sound source and the source localization algorithm affect the accuracy of the localization for multiple-drone sound sources.