• Title/Summary/Keyword: 국토관측위성

Search Result 64, Processing Time 0.026 seconds

Analysis of flood stage difference due to the vegetation in Seomjin river in August 2020 (2020년 8월 홍수시 식생으로 인한 섬진강 홍수위 변화 분석)

  • Kim, Won;Baek, Donghae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.2-2
    • /
    • 2021
  • 최근들어 하천내 식생이 차지하는 비율이 크게 증가하고 있으며, 이러한 현상은 하천의 규모나 위치, 댐 유무에 관계없이 전국적으로 발생하고 있다. 식생 면적 비율의 증가는 하천의 육역화로 이어질 뿐만아니라 홍수위를 상승시켜 홍수 안전에 영향을 미칠 수 있다. 본 연구에서는 2020년 8월 섬진강에서 발생한 홍수를 대상으로 식생이 홍수위에 미치는 영향을 분석하였다. 섬진강에는 초본류 뿐만아니라 버드나무류의 목본류가 상당히 분포하고 있으며 이와 같은 식생이 홍수흐름에 큰 영향을 미친 것으로 보인다. 분석을 위해 홍수 이후 섬진강 현지 답사를 통해 식생분포 현황 및 홍수로 인한 영향을 조사하였다. 섬진강의 식생분포 조사를 위해서는 2020년 4월 조사된 유럽 우주국 Sentinel-2 위성영상을 사용하였으며, 정규식생지수(NDVI)와 정규수분지수(NDWI)를 이용하여 하천내 식생밀도를 단계별로 구분하였다. 군집된 식생지수에 따라 USGS의 매닝계수 산정표를 기본으로 식생분포 군집별 조도계수를 산정하여 대상 구간내에 2차원으로 분포시켰다. 수치모형은 NAYS2D 모형을 사용하였으며 대상구간은 섬진강 고달교에서 구례교까지 21.5km이다. 계산조건은 2020년 8월 홍수중 구례교 수위관측소를 기준으로 최대수위가 발생한 시점의 자료를 활용하였다. 고달교에서는 홍수통제소에서 제공하는 홍수량을 상류경계 조건으로 입력하였고 구례교에서는 해당 시각의 수위를 하류경계조건으로 입력하였다. 모형의 검증을 위해 대상구간의 중간에 있는 압록수위관측소 수위를 활용하였다. 식생 유무에 따른 홍수위변화는 조도계수 값에 의해 반영되도록 하였는데 식생이 있는 경우는 현재 상태, 식생이 없는 경우는 모든 지점에 모래와 자갈이 분포하는 것으로 가정하여 계산된 홍수위를 비교하였다. 분석 결과 대상구간에는 전체 면적중 약 56%를 식생이 차지하고 있으며 이로 인해 0.5~1.0m의 홍수위 상승이 발생하는 것으로 분석되었다. 수목으로 인해 2020년 8월과 같은 큰 홍수시에도 홍수위가 크게 상승하는 것으로 분석되었는데 이와 같은 점을 고려하면 하천내 식생이 홍수위에 미치는 영향을 감안하여 적극적인 식생관리 방안이 시행될 필요가 있을 것으로 판단된다.

  • PDF

Construction of Expert Service for GPS Relative Positioning Data Processing (GPS 상대측위 자료처리를 위한 전문가 서비스 구축)

  • Park, Joon-Kyu;Kim, Min-Gyu;Lee, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2481-2486
    • /
    • 2013
  • It requires a lot of time and effort for general users who do not have enough understanding of GPS to properly processing GPS data. However, the GPS data processing field heavily relies on foreign-produced software and there is almost no development of user-oriented technology. Therefore, in this study, it was attempted to build an expert service that enables non-experts to use high-precision GPS data processing. As a result, an expert service that can maximize user convenience simply by entering the minimum required information for GPS data processing was developed, and the expert service was verified by relative positioning processing of the observation data of satellite control point provided by National Geographic Information Institute and observation data obtained by GPS survey. The expert service significantly reduces the effort and time for processing GPS data, which will contribute to precise positioning and other various studies.

Analysis of National Control Points in Jeju Area (제주지역의 국가 기준점 정확도 분석)

  • Jung young-dong;Yang young-bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.273-282
    • /
    • 2005
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF (International Terrain Reference Frame). Currently the National Geographic Information Institute (NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

Accuracy Analysis on Geodetic Network in Jeju area using GPS (GPS에 의한 제주지역의 측지기준망 정확도 분석)

  • Kang, Sang-Gu;Jung, Young-Dong;Yang, Young-Bo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.65-74
    • /
    • 2006
  • A rapidly developed satellite technology is used in comprehensive fields such as spatial data aquisition and applications. Especially a GPS positioning is expected to reinvigorate at the national reference system changes to ITRF(International Terrain Reference Frame). Currently the National Geographic Information Institute(NGII) issues a triangulation point coordinate by separating old and new coordinates and in the year of 2007 it will be scheduled to be changed ITRF. The triangulation point coordinate in Cheju area causes some problems due to the difference original observation and re-observation. Thus in this study a GPS observation is conducted after re-organizing geodetic network based on 1st and 2nd order triangulation in order to check the current triangulation points in Cheju area. After the GPS observation data analysis, stable points were extracted, proposed a geodetic network and its application.

  • PDF

Comparison of SqueeSAR Analysis Method And Level Surveying for Subsidence Monitoring at Landfill Site (매립지 지반침하 모니터링을 위한 SqueeSAR 해석법과 수준측량의 비교)

  • Kim, Dal-Joo;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.137-151
    • /
    • 2018
  • Recently, National interest has been rising due to earthquakes in Gyeongju and Pohang, disasters caused by landslides, landslides, and sinkholes around construction sites, and damage caused by disasters. SAR is able to detect ground displacement in mm for wide area, collect data through satellite, predict timeliness of crustal change by time series analysis, and reduce disaster and disaster damage. The purpose of this study is to investigate the latest SAR interference analysis technique (SqueeSAR analysis technique) of Sentinel-1A satellite (SAR sensor) of European ESA for about 3 years by selecting the 1st landfill site in the metropolitan area in Incheon, The settlement amount was calculated in a time series. Especially, in order to examine the accuracy of the subsidence and subsidence tendency by the SqueeSAR analysis method, the ground level survey was compared and analyzed for the first time in Korea. Also, the tendency of the subsidence trend was predicted by analyzing the time series and correlation trend of the subsidence for three years. Through this study, it is expected that disaster prevention and disaster prevention such as sinkhole and landslide can be utilized from time series monitoring of crustal variation of the land.

Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models (고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.106-118
    • /
    • 2009
  • Satellite imagery with high resolution of about one meter is used widely in commerce and government applications ranging from earth observation and monitoring to national digital mapping. Due to the expensiveness of IKONOS Pro and Precision products, it is attractive to use the low-cost IKONOS Geo product with vendor-provided rational polynomial coefficients (RPCs), to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different polynomial models, that are the offset model, the scale and offset model, the Affine model, and the 2nd-order polynomial model, defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. Not only the algorithm for RF-based ground coordinates but also the algorithm for accuracy improvement of RF-based ground coordinates are developed which is based on the four models, The experiment also evaluates the effect of different cartographic parameters such as the number, configuration, and accuracy of ground control points on the accuracy of geopositioning. As the result of a experimental application, the root mean square errors of three dimensional ground coordinates which are first derived by vendor-provided Rational Function models were averagely 8.035m in X, 10.020m in Y and 13.318m in Z direction. After applying polynomial correction algorithm, those errors were dramatically decreased to averagely 2.791m in X, 2.520m in Y and 1.441m in Z. That is, accuracy was greatly improved by 65% in planmetry and 89% in vertical direction.

  • PDF

Estimation of Leaf Area Index Based on Machine Learning/PROSAIL Using Optical Satellite Imagery (광학위성영상을 이용한 기계학습/PROSAIL 모델 기반 엽면적지수 추정)

  • Lee, Jaese;Kang, Yoojin;Son, Bokyung;Im, Jungho;Jang, Keunchang
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1719-1729
    • /
    • 2021
  • Leaf area index (LAI) provides valuable information necessary for sustainable and effective management of forests. Although global high resolution LAI data are provided by European Space Agency using Sentinel-2 satellite images, they have not considered forest characteristics in model development and have not been evaluated for various forest ecosystems in South Korea. In this study, we proposed a LAI estimation model combining machine learning and the PROSAIL radiative transfer model using Sentinel-2 satellite data over a local forest area in South Korea. LAI-2200C was used to measure in situ LAI data. The proposed LAI estimation model was compared to the existing Sentinel-2 LAI product. The results showed that the proposed model outperformed the existing Sentinel-2 LAI product, yielding a difference of bias ~ 0.97 and a difference of root-mean-square-error ~ 0.81 on average, respectively, which improved the underestimation of the existing product. The proposed LAI estimation model provided promising results, implying its use for effective LAI estimation over forests in South Korea.

Development of the Visualization Prototype of Radar Rainfall Data Using the Unity 3D Engine (Unity 3D 엔진을 활용한 강우레이더 자료 시각화 프로토타입 개발)

  • CHOI, Hyeoung-Wook;KANG, Soo-Myung;KIM, Kyung-Jun;KIM, Dong-Young;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.131-144
    • /
    • 2015
  • This research proposes a prototype for visualizing radar rainfall data using the unity 3D engine. The mashup of radar data with topographic information is necessary for the 3D visualization of the radar data with high quality. However, the mashup of a huge amount of radar data and topographic data causes the overload of data processing and low quality of the visualization results. This research utilized the Unitiy 3D engine, a widely used engine in the game industry, for visualizing the 3D topographic data such as the satellite imagery/the DEM(Digital Elevation Model) and radar rainfall data. The satellite image segmentation technique and the image texture layer mashup technique are employed to construct the 3D visualization system prototype based on the topographic information. The developed protype will be applied to the disaster-prevention works by providing the radar rainfall data with the 3D visualization based on the topographic information.

Development of Precise Point Positioning Solution for Detection of Earthquake and Crustal Movement (지진 및 지각변동 감지를 위한 정밀절대측위 솔루션 개발)

  • Park, Joon-Kyu;Kim, Min-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4587-4592
    • /
    • 2013
  • GPS is recognized the essential method to obtain the best result in the sphere of earth science that is setting of International Reference Frame, decision of the rotation coefficient about the earth rotation axis, detection of the crustal deformation, and observation of the diastrophism by high precision positioning except for navigation, geodetic survey and mapping. Therefore, in this study, it was attempted to build an expert service that enables non-experts to use high-precision GPS data processing. As a result, an Precise Point Positioning Solution that can maximize user convenience simply by entering the minimum required information for GPS data processing was developed, and the result of Precise Point Positioning Solution using GPS data provided by National Geographic Information Institute was compared with result of ITRF.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.