Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.6.1.19

Estimation of Leaf Area Index Based on Machine Learning/PROSAIL Using Optical Satellite Imagery  

Lee, Jaese (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Kang, Yoojin (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Son, Bokyung (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Im, Jungho (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Jang, Keunchang (Forest ICT Research Center, National Institute of Forest Science)
Publication Information
Korean Journal of Remote Sensing / v.37, no.6_1, 2021 , pp. 1719-1729 More about this Journal
Abstract
Leaf area index (LAI) provides valuable information necessary for sustainable and effective management of forests. Although global high resolution LAI data are provided by European Space Agency using Sentinel-2 satellite images, they have not considered forest characteristics in model development and have not been evaluated for various forest ecosystems in South Korea. In this study, we proposed a LAI estimation model combining machine learning and the PROSAIL radiative transfer model using Sentinel-2 satellite data over a local forest area in South Korea. LAI-2200C was used to measure in situ LAI data. The proposed LAI estimation model was compared to the existing Sentinel-2 LAI product. The results showed that the proposed model outperformed the existing Sentinel-2 LAI product, yielding a difference of bias ~ 0.97 and a difference of root-mean-square-error ~ 0.81 on average, respectively, which improved the underestimation of the existing product. The proposed LAI estimation model provided promising results, implying its use for effective LAI estimation over forests in South Korea.
Keywords
LAI; random forest; PROSAIL; Sentinel-2;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pasqualotto, N., J. Delegido, S. van Wittenberghe, M. Rinaldi, and J. Moreno, 2019. Multi-crop green LAI estimation with a new simple sentinel-2 LAI index (SeLI), Sensors, 19(4): 904.   DOI
2 Moon, H.G., T.Y. Choi, D.I. Kang, And J.G. Cha, 2018. Study on the Estimation of leaf area index (LAI) of using UAV vegetation index and Tree Height data, Journal of the Korean Association of Geographic Information Studies, 21(4): 158-174 (in Korean with English abstract).   DOI
3 Rasanen, A., S. Juutinen, M. Kalacska, M. Aurela, P. Heikkinen, K. Maenpaa, A. Rimali, and T. Virtanen, 2020. Peatland leaf-area index and biomass estimation with ultra-high resolution remote sensing, GIScience and Remote Sensing, 57(7): 943-964.   DOI
4 Sibanda, M., O. Mutanga, T. Dube, T.S Vundla, and P.L Mafongoya, 2019. Estimating LAI and mapping canopy storage capacity for hydrological applications in wattle infested ecosystems using Sentinel-2 MSI derived red edge bands, GIScience and Remote Sensing, 56(1): 68-86.   DOI
5 Sun, Y., Q. Qin, H. Ren, T. Zhang, and S. Chen, 2019. Red-edge band vegetation indices for leaf area index estimation from sentinel-2/msi imagery, IEEE Transactions on Geoscience and Remote Sensing, 58(2): 826-840.   DOI
6 He, Z., S. Li, Y. Wang, Y. Hu, and F. Chen, 2019. Assessment of leaf area index of rice for a growing cycle using multi-temporal C-band PolSAR datasets, Remote Sensing, 11(22): 2640.   DOI
7 Woodgate, W., M. Soto-Berelov, L. Suarez, S.D. Jones, M.J. Hill, P. Wilkes, C. Axelsson, A. Haywood, and A. Mellor, 2012. Searching for the Optimal Sampling Design for Measuring LAI in an Upland Rainforest, Proc. of the Geospatial Science Research Symposium GSR2, Melbourne, AUS, Dec. 10-12, vol. 1328, pp. 1-11.
8 Zhu, Y., K. Liu, L. Liu, S. W. Myint, S. Wang, H. Liu, and Z. He, 2017. Exploring the potential of worldview-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms, Remote Sensing, 9(10): 1060.   DOI
9 Chen, J.M. and J. Cihlar, 1996. Retrieving leaf area index of boreal conifer forests using Landsat TM images, Remote sensing of Environment, 55(2): 153-162.   DOI
10 Dong, T., J. Liu, J. Shang, B. Qian, B. Ma, J.M. Kovacs, D. Walters, X. Jiao, X. Geng, and Y. Shi, 2019. Assessment of red-edge vegetation indices for crop leaf area index estimation, Remote Sensing of Environment, 222: 133-143.   DOI
11 Jensen, J.R. 2016. Introductory digital image processing: a remote sensing perspective, University of South Carolina, Columbus, State of South Carolina, USA, pp. 317-318.
12 Sim, S., W. Kim, J. Lee, Y. Kang, J. Im, C. Kwon, and S. Kim, 2020. Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches, Korean Journal of Remote Sensing, 36(5-3): 1109-1123 (in Korean with English abstract).   DOI
13 Verrelst, J., J.P. Rivera, F. Veroustraete, J. Munoz-Mari, J.G. Clevers, G. Camps-Valls, and J. Moreno, 2015. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison, ISPRS Journal of Photogrammetry and Remote Sensing, 108: 260-272.   DOI
14 Breiman, L., 2001. Random forests, Machine Learning, 45(1): 5-32.   DOI
15 Xu, J., L.J. Quackenbush, T.A. Volk, and J. Im, 2020. Forest and crop leaf area index estimation using remote sensing: Research trends and future directions, Remote Sensing, 12(18): 2934.   DOI
16 Kwon, B., J. Jeon, H.S. Kim, and M.J. Yi, 2016. Estimation of specific leaf area index using direct method by leaf litter in Gwangneung, Mt. Taewha and Mt. Gariwang, Korean Journal of Agricultural and Forest Meteorology, 18(1): 1-15 (in Korean with English abstract).   DOI
17 Xie, Q., J. Dash, A. Huete, A. Jiang, G. Yin, Y. Ding, D. Peng, C.C. Hall, L. Brown, Y. Shi, H. Ye, Y. Dong, and W. Huang, 2019. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery, International Journal of Applied Earth Observation and Geoinformation, 80: 187-195.   DOI
18 Houborg, R. and M.F. McCabe, 2018. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning, ISPRS Journal of Photogrammetry and Remote Sensing, 135: 173-188.   DOI
19 Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P.J. Zarco-Tejada, G.P. Asner, C. Francois, and S.L. Ustin, 2009. PROSPECT+ SAIL models: A review of use for vegetation characterization, Remote Sensing of Environment, 113: S56-S66.
20 Korea Forest Service, 2021. "Forest Basic Statistics 2020", Korea Forest Service, Daejeon, Korea, p. 15 (in Korean).
21 Chen, Z., K. Jia, C. Xiao, D. Wei, X. Zhao, J. Lan, X. Wei, Y. Yao, B. Wang, Y. Sun, and L. Wang, 2020. Leaf Area Index Estimation Algorithm for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods, Remote Sensing, 12(13): 2110.   DOI
22 Cho, D., C. Yoo, J. Im, Y. Lee, and J. Lee, 2020. Improvement of spatial interpolation accuracy of daily maximum air temperature in urban areas using a stacking ensemble technique, GIScience and Remote Sensing, 57(5): 633-649.   DOI
23 Fang, H., F. Baret, S. Plummer, and G. Schaepman-Strub, 2019. An overview of global leaf area index (LAI): Methods, products, validation, and applications, Reviews of Geophysics, 57(3): 739-799.   DOI
24 Lee, C.S., E. Sohn, J.D. Park, and J.D. Jang, 2019. Estimation of soil moisture using deep learning based on satellite data: A case study of South Korea, GIScience and Remote Sensing, 56(1): 43-67.   DOI
25 Weiss, M. and F. Baret, 2016. S2ToolBox Level 2 products: LAI, FAPAR, FCOVER, Institut National de la Recherche Agronomique (INRA), Avignon, FRA.
26 Ganguly, S., R.R. Nemani, G. Zhang, H. Hashimoto, C. Milesi, A. Michaelis, W. Wang, P. Votava, A. Samanta, F. Melton, J.L. Dungan, E. Vermote, F. Gao, Y. Knyazikhin, and R. B. Myneni, 2012. Generating global leaf area index from Landsat: Algorithm formulation and demonstration, Remote Sensing of Environment, 122: 185-202.   DOI
27 Kross, A., H. McNairn, D. Lapen, M. Sunohara, and C. Champagne, 2015. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops, International Journal of Applied Earth Observation and Geoinformation, 34: 235-248.   DOI