• 제목/요약/키워드: 국제특허분류(IPC)

검색결과 45건 처리시간 0.021초

국제특허분류(IPC) 코드 기반 전자상거래(G06Q) 분야 특허 정보 분석에 관한 연구 (A study on the Patent Information Analysis on Electronic Commerce(G06Q) based on the International Patent Classification (IPC) Code)

  • 심재륜
    • 한국정보통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1499-1505
    • /
    • 2015
  • 본 연구는 국제특허분류(IPC) 코드 기반의 특허 기술내용 분류를 통해 관련 기업과 기술의 특허 정보 분석에 관한 연구로 국내 최대 인터넷 기업인 네이버주식회사의 전자상거래(G06Q) 분야 출원 902건을 대상으로 하였다. 먼저 IPC 코드별 출원 및 등록건수를 조사하여 핵심 기술 분야와 특허 출원 현황을 분석하였다. 또한 IPC 코드의 주분류-부분류 상호 연결성을 조사하여 기술 융복합을 조사하였다. 마지막으로 연도별 IPC 코드별 출원 현황을 조사하여 특허 기술 변화를 살펴보았다. 본 연구에서 활용한 IPC 코드 기반 특허 정보 분석을 통해 기업과 기술의 트렌드를 보다 심층적으로 예측할 수 있다.

CPC 기반 특허 기술 분류 분석 모델 (A Study of CPC-based Technology Classification Analysis Model of Patents)

  • 채수현;김장원
    • 한국콘텐츠학회논문지
    • /
    • 제18권10호
    • /
    • pp.443-452
    • /
    • 2018
  • 최근 들어 지식재산권의 확보는 기업의 기술 경쟁력 확보를 위해 점점 더 중요하게 되었다. 특히 특허는 기업의 핵심 기술 및 요소 기술을 포함하고 있기 때문에 특허 분석을 통한 기업 가치 측정 및 경쟁 기술 분야 분석 등의 연구가 활발히 진행되고 있다. 국제특허분류(IPC)를 기반으로 다양한 특허 분석 연구가 진행되었으나, IPC는 최신의 기술 분야를 포함하고 있지 않으며 기술의 상세 분류가 충분하지 않아 기술 분류 정확도가 낮아진다. 이를 보완하기 위해 최신의 기술 분야를 포함하고 상세한 기술 분류를 위한 선진특허분류(CPC)가 개발되었으나 이러한 특징을 고려한 특허 분석 연구가 아직 미흡하다. 본 논문에서는 CPC의 상세 분류체계를 이용하여 특허에 포함된 기술 분류 분석 모델을 제안한다. CPC의 상세 분류체계간의 연관관계 중요도 및 효율성을 고려하여 출원인의 특허를 분석하여 핵심 기술 분류 추출을 통해 기존 IPC 기반의 방법보다 상세하고 정확한 분석이 가능하다. 기존의 IPC 기반의 특허 분석 방법과 비교 평가를 통해 제안 모델이 출원인의 핵심 기술 분류를 분석함에 있어 더 좋은 성능을 보임을 확인하였다.

딥러닝-규칙기반 병행 모델을 이용한 특허문서의 자동 IPC 분류 방법 (Hybrid Approach Combining Deep Learning and Rule-Based Model for Automatic IPC Classification of Patent Documents)

  • 김용일;오유리;심우철;고봉수;이봉건
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.347-350
    • /
    • 2019
  • 인공지능 관련 기술의 발달로 다양한 분야에서 인공지능 활용에 대한 관심이 고조되고 있으며 전문영역에서도 기계학습 기법을 활용한 연구들이 활발하게 이루어지고 있다. 특허청에서는 분야별 전문지식을 가진 분류담당자가 출원되는 모든 특허에 국제특허분류코드(이하 IPC) 부여 작업을 수행하고 있다. IPC 분류와 같은 전문적인 업무영역에서 딥러닝을 활용한 자동 IPC 분류 서비스를 제공하기 위해서는 기계학습을 이용하는 분류 모델에 분야별 전문지식을 직관적으로 반영하는 것이 필요하다. 이를 위해 본 연구에서는 딥러닝 기반의 IPC 분류 모델과 전문지식이 반영된 분류별 어휘사전을 활용한 규칙기반 분류 모델을 병행하여 특허문서의 IPC분류를 자동으로 추천하는 방법을 제안한다.

  • PDF

IPC 코드 기반 전자상거래(G06Q) 분야 특허 정보 현황 - 2011년 이후 특허 등록을 중심으로 - (Patent Information Analysis in the Area of Business Method(G06Q) Based on IPC Code - Focused on Patents since 2011 -)

  • 심재륜
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.930-932
    • /
    • 2015
  • 본 연구는 국제특허분류(IPC) 코드 기반의 특허 정보 분석을 통해 기술 트렌드를 파악하여 새로운 기술을 예측하는 기술예측에 관한 기초연구이다. 특허 분석 대상은 2011년 이후 국내에 특허 등록된 IPC 코드 분류 기준에서 전자상거래(G06Q)가 주분류인 특허이다. 2011년 이후 전자상거래 분야 중 가장 많이 특허 등록된 분야는 G06Q 50/10 (1,652건), G06Q 30/02 (816건), G06Q 50/30 (735건), G06Q 40/02 (713건), G06Q 50/22 (530건), G06Q 30/06 (489건) 순이다.

  • PDF

함정 분야 방산업체 주요 기술 분포 분석 (The Major Technology Distribution Analysis of Domestic Defense Companies in Naval Ships based on Patent Information Data)

  • 김장은
    • 한국산학기술학회논문지
    • /
    • 제21권7호
    • /
    • pp.625-637
    • /
    • 2020
  • 함정 무기체계는 작전운용성능(능력)에 따라 국내 기술 수준에 기반하여 설계/건조되며, 일정 기간 운용 후 성능개량 소요 발생에 따른 개조/개장 및 기존함 대비 고도화된 후속함이 요구되는 특성을 가지고 있다. 이러한 특성을 고려하고 고객이 요구하는 함정 무기체계 기술 수준과 무기체계 연구개발을 통한 국내 기술 수준 향상 및 핵심기술 확보하기 위해 기술 분류/특성이 정형화되어있는 특허 자료 분석을 통해 획득 필요 기술에 대한 의사결정 자료로 활용할 수 있다. 이를 위해 방위사업법 제35조(방산업체의 지정 등)에 따라 지정된 10개 함정 분야 방산업체의 특허자료를 특허청 특허정보검색서비스를 통해 특허자료(특허수/국제특허분류 14,964건/352개)를 수집하였으며, 수집된 자료를 기반으로 함정분야 방산업체 간 사회망 분석을 통해 중심성이 높은 58개 국제특허분류를 추출했다. 추출된 국제특허분류를 기반으로 주성분 분석을 통해 함정 분야 방산업체가 집중하는 주요 기술 분야로 국제특허분류 7개(B63B, H01M, F03D, B01D, H02K, B23K, H01H)를 확인했다. 이어서 자기회귀 결합 이동평균 모형 분석결과, 국제특허분류 3개(B63B, B01D, B23K)는 지속적인 기술획득 활동이 예측했으며, 국제특허분류 4개(H01M, F03D, H02K, H01H)는 기술획득 활동이 낮아짐을 예측했다.

IoT와 Wearables 기술융합을 위한 특허동향분석 (A Patent Trend Analysis for Technological Convergence of IoT and Wearables)

  • 강지호;김종찬;이준혁;박상성;장동식
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.306-311
    • /
    • 2015
  • 본 연구는 협력적특허분류(CPC)를 활용한 '사물인터넷(IoT)' 과 '웨어러블(wearables)' 의 기술융합동향 분석에 관한 것이다. 국내 도입 분야가 점차 확대되고 있는 CPC는 기존의 국제특허분류(IPC)보다 세분화된 분류를 제공해 기술 특성을 더 세밀하고 정확하게 반영할 수 있어 특허정보 분석 시 활용도를 배가시킬 것으로 기대된다. 아직까지 CPC를 특허정보 분석에 활용한 연구가 드물며, 특허분류코드를 활용해 기술융합현상을 분석한 선행연구들 대부분이 IPC코드를 활용하였다. 본 연구에서는 CPC를 활용하여 wearable IoT 영역의 기술융합동향분석을 실시하였고, 이를 위한 사전분석으로서 각 특허에 할당된 CPC와 IPC를 비교분석하였다. 연관규칙 마이닝 기법을 활용한 CPC 코드분석을 통해 융합이 활발하게 발생하는 기술영역들을 도출하고 시간에 따른 추세변화를 파악하였다.

구조화된 연관맵을 이용한 연구개발 전략 수립 (A R&D strategies for development using structured association map)

  • 송원호;이준석;박상성
    • 한국지능시스템학회논문지
    • /
    • 제26권3호
    • /
    • pp.190-195
    • /
    • 2016
  • 급변하는 글로벌 시장 환경에서 기술은 계속해서 급속히 발전하고 있다. 이러한 급변하고 있는 환경을 반영한 연구개발은 기업에 있어서 필수가 되었다. 즉, 기업의 경쟁력 향상을 위해서는 자사가 보유한 기술에 대한 체계적인 분석이 필요하다. 최근에는 객관적이며 정량화된 기술분류를 위하여 특허문서의 IPC 코드를 이용하여 기술분류를 수행하고 있다. 국제특허분류인 IPC 코드는 국제적으로 규격화된 기술분류 코드이기 때문에, 이를 활용하면 객관적이고 정량화된 기술분석 수행이 가능하다. 본 논문에서는 C사의(社) 특허에 대하여 전수조사를 실시하고, IPC 코드기반 분석 Matrix를 구축한 후 해당특허들을 신뢰도 기반의 연관규칙 마이닝을 실시하며 구조화된 연관맵을 생성한다. 연관맵을 이용하면 해당회사의 특허 현황 파악에 유용하게 활용된다. 또한, 구조화된 연관맵을 이용하면 상호 연관있는 기술에 대하여 군집화를 가능하게 하기 때문에, 본 논문에서 제시한 C사(社)의 기술을 파악할 수 있으며 이를 기반으로 기술 흐름과 향후 기술 전략 수립을 가능하게 한다.