• Title/Summary/Keyword: 국수

Search Result 484, Processing Time 0.024 seconds

Quality Characteristics of Dried Noodles Added with Ligularia fischeri Powder (곰취 분말을 첨가한 국수의 품질특성)

  • Park, Bock Hee;Joo, Ha Mi;Cho, Hee Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.29 no.2
    • /
    • pp.205-211
    • /
    • 2014
  • This study investigated the quality of noodles containing different amounts of Ligularia fischeri powder (LFP). Noodles were prepared at ratios of 0, 1, 3, 5, and 7% LFP based on flour weight. Cooking quality, mechanical texture properties, and viscosity were measured, and a sensory evaluation was performed with the prepared noodles. Gelatinization points of the composite LFP-wheat flours increased. As measured via amylography, viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 minutes, and maximum viscosity values of samples decreased, as the LFP content increased. As increasing amounts of LFP were added, the L, a, and b values decreased while color values, weight, and volume of cooked noodles increased, as did the turbidity of the soup. With regard to textural characteristics, LFP additive increased hardness, cohesiveness, and springiness, while decreasing adhesiveness. Sensory evaluation showed that high quality cooked noodles could be produced by inclusion of 3% LFP.

Effects of microstructure and welding heat input on the toughness of weldable high strength steel weldments (용접구조용 고장력강의 용접부 인성에 미치는 미세 조직과 용접 입열량의 영향)

  • 장웅성;방국수;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.44-54
    • /
    • 1989
  • This study was undertaken to evaluate the allowable welding heat input range for high strength steels manufactured by various processes and to compare the weldability of TMCP steel for high heat input welding with that of conventional Ti-added normalized steel. The allowable welding heat input ranges for conventional 50kg/$mm^2$ steel to guarantee D or E grade of ship structural steel were below 150 and 80kJ/cm respectively. Such a limit in welding heat input was closely related with the formation of undesirable microstructures, such as grain boundary ferrite and ferrite side plate in the coarse grain HAZ. In case of 60 and 80kg/$mm^2$ quenched and tempered steels, for securing toughness in weldments over toughness requirements for base metal, each welding heat input had to be restricted below 60 and 40kJ/cm, that was mainly due to coarsened polygonal ferrite in weld metal and lower temperature transformation products in coarse grain HAZ. The TMCP steel could be appropriate as a grade E ship hull steel up to 200kJ/cm, but the Ti-added normalized steel could be applied only below 130kJ/cm under the same rule. This difference was partly owing to whether uniform and fine intragranular ferrite microstructure was well developed in HAZ or not.

  • PDF

Quality Characteristics of Dried Noodle Made with Lotus Root Powder (연근분말을 첨가한 국수의 품질특성)

  • Park, Bock-Hee;Cho, Hee-Sook;Bae, Kyoung-Yun
    • Korean journal of food and cookery science
    • /
    • v.24 no.5
    • /
    • pp.593-600
    • /
    • 2008
  • The principal objective of this study was to evaluate the quality characteristics of dried noodles when different concentrations of Lotus root powder were added to the wheat flour. The cooking quality, mechanical textural properties, and viscosity were measured, and a sensory evaluation was conducted with the prepared noodles. The gelatinization points of the composite Lotus root powder-wheat flours were shown to have increased and the viscosity at $95^{\circ}C$, viscosity at $95^{\circ}C$ after 15 minutes, and maximum viscosity values of those samples were reduced, as the Lotus root powder content was increased as measured via amylography. As increasing amounts of Lotus root powder were added, the L and b values were reduced, and the color values, weight, and volume of the cooked noodles increased, as did the turbidity of the soup. With regard to the textural characteristics, the Lotus root powder additive increased hardness and reduced adhesiveness, cohesiveness, and springiness. Overall, the noodles prepared with 15% Lotus root powder were preferred more than the other noodles, according to the results of our sensory evaluation.

Cooking Characteristics of Noodle containing Konjac Powder and Capsosiphon fulvescens (매생이 농도를 달리한 곤약국수의 조리 특성)

  • Choi, Hee-Eun;Park, Hwa-Young;Kim, Na-Yul;Jang, Hyeock-Soon;Lee, Nan-Hee;Choi, Ung-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.847-851
    • /
    • 2017
  • This purpose of this study was to investigate cooking characteristics of noodles prepared by adding 0, 2, 4 or 6 percent of Capsosiphon fulvescens to wheat flour containing konjac powder. Water binding capacity was significantly increased with increasing amounts of Capsosiphon fulvescens. Weight and volume of cooked noodles increased significantly in proportion with the amount of Capsosiphon fulvescens. Turbidity of the soup after cooking also increased with the addition of Capsosiphon fulvescens. Brightness(L) and redness(a) were decreased with addition of Capsosiphon fulvescens. Yellowness(b) increased. The color value of cooked noodles was decreased compared with that of wet noodles. Sensory evaluation scores revealed that cooked noodles with 4 percent addition group were highest in terms of color, flavor and overall acceptability. This study validates that addition of Amorphophallus konjac and 4 percent Capsosiphon fulvescens may improve functionality and preference of noodles.

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.

Effects of Welding Parameters on Diffusible Hydrogen Contents in FCAW-S Weld Metal (셀프실드아크 용접금속의 확산성수소량에 미치는 용접변수의 영향)

  • Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.77-81
    • /
    • 2013
  • The effects of the welding parameters, contact tip-to-workpiece distance (CTWD), current, and voltage on the diffusible hydrogen content in weld metal deposited by self-shielded flux cored arc welding were investigated and rationalized by comparing the amount of heat generated in the extension length of the wire. This showed that as CTWD increased from 15mm to 25mm, the amount of heat generated was increased from 71.1J to 174.8J, and the hydrogen content was decreased from 11.3mL/100g to 5.9mL/100 g. Even if little difference was observed in the amount of heat generated, the hydrogen content was increased with an increase in voltage because of the longer arc length. A regression analysis showed that the regression coefficient of voltage in self-shielded flux cored arc welding is greater than that in $CO_2$ arc welding. This implies that voltage control is more important in self-shielded flux cored arc welding than in $CO_2$ arc welding.

Quantitative Analysis on the Effects of Welding Parameters on Diffusible Hydrogen Contents in Weld Metal Produced by FCAW Process (FCAW에서 용접금속 확산성수소량에 미치는 용접변수 영향의 정량적 해석)

  • Han, Dong-Woo;Bang, Kook-Soo;Jeong, Hong-Chul;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.54-59
    • /
    • 2010
  • The effects of welding parameters such as contact tip-to-work distance (CTWD), voltage, and current on the weld metal diffusible hydrogen contents (HD) were investigated and rationalized by the calculation of heating time and amount of heat generated in the extension length of flux cored wire. As CTWD increased from 15 to 25mm, HD decreased from 8.46 to 5.45mL/100g deposited metal. Calculations showed that, with an increase of CTWD, the amount of heat generated increased from 46 to 92J in addition to an increase of heating time. Increase of current from 250 to 320A, however, gave little variation of HD. It showed that no significant change in the amount of heat generated was found, and heating time was decreased with an increase of current. It also showed that CTWD is more influential than voltage in relatively lower heat input ranges, while voltage is more in higher input ranges

Impact Toughness and Softening of the Heat Affected Zone of High Heat Input Welded 390 MPa Yield Strength Grade TMCP Steel (항복강도 390 MPa급 가공열처리강 대입열용접 열영향부 충격인성 및 연화현상)

  • Bang, Kook-Soo;Ahn, Young-Ho;Jeong, Hong-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.11
    • /
    • pp.796-804
    • /
    • 2018
  • The Charpy impact toughness of the heat affected zone (HAZ) of electro gas welded 390 MPa yield strength grade steel, manufactured by a thermo mechanically controlled process, was investigated. The effects of added Nb on the toughness of the steel and the factors influencing scatter in toughness are discussed in the present work. It was observed that adding Nb to the steel led to the deterioration of HAZ toughness. The presence of soluble Nb in the HAZ increased its hardenability and resulted in a larger amount of low toughness bainitic microstructure. Microstructural observations in the notch root area revealed the significant role of different microstructures in the area. In the presence of a larger amount of bainitic microstructures, the HAZ exhibited a lower Charpy toughness with a larger scatter in toughness. A softened zone with a lower hardness than the base metal was formed in the HAZ. However, theoretical analysis revealed that the presence of the zone might not be a problem in a real welded joint because of the plastic restraint effect enforced by surrounding materials.

Changes in the Characteristics of Noodle by the Addition of Biji Powder (비지 첨가에 따른 국수의 제면 특성 변화)

  • Choi, Hyeon-Min;Jang, Hyeock-soon;Lee, Nan-Hee;Choi, Ung-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.919-925
    • /
    • 2018
  • The objective of this study was to determine the characteristics of noodle dough made with biji powder (2, 4, 6 and 8%). Increase in the amount of biji powder significantly increases the water-binding capacity and decreases lightness (L) (p<0.05). The changes of redness (a), yellowness (b) and size of pore were insignificant. In the case of raw noodle, hardness, springiness, gumminess and chewiness of raw noodle significantly increased with increasing concentrations of the biji powder (p<0.05). Hardness of cooked noodle increased according with increase in concentration of biji (p<0.05). Springiness was increased up to 4% of biji concentration and slightly decreased at higher concentrations (p<0.05). Adhesiveness and cohesiveness of cooked noodle decreased according with increase in concentration of biji (p<0.05). The was no significant changes in the gumminess and chewiness. Taken together, addition of 4.0% biji powder to noodle dough may improve the preference of noodles.

Weldability of Low-Carbon ASTM A356 CA6NM Martensitic Stainless Steel Casting for Power Plants (발전용 저탄소 ASTM A356 CA6NM 마르텐사이트계 스테인리스 주강의 용접성)

  • Bang, Kook-soo;Park, Chan;Lee, Joo-young;Lee, Kyong-woon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.73-78
    • /
    • 2011
  • Weldability, especially HAZ cold cracking, weld metal solidification cracking, and HAZ liquation cracking susceptibilities, of ASTM A356 CA6NM martensitic stainless steel casting was investigated and compared with that of 9-12% Cr ferritic steel castings. Irrespective of the Cr and Ni content in the castings, the HAZ maximum hardness increased with an increase of carbon content. CA6NM steel, which has the lowest carbon content, had the lowest HAZ hardness and showed no cold cracking in y-slit cracking tests. CA6NM steel, meanwhile, showed the largest weld metal solidification cracking susceptibility in varestraint tests because of its higher amount of impurity elements, phosphorus, and sulfur. All castings investigated had good high temperature ductility in hot ductility tests and showed little difference in liquation cracking susceptibility.