• Title/Summary/Keyword: 국부 거동

Search Result 440, Processing Time 0.026 seconds

A Study on the Structural Behavior and the Strength of Circular Hollow Steel(CHS) Section Columns (원형강관 기둥의 구조적인 거동 및 강도에 관한 연구)

  • Kang, Doo Won;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2009
  • This paper describes the structural behavior and the ultimate strengths of circular hollow steel (CHS) sections based on a series of compression tests. The ultimate strengths of CHS section columns are mainly dependent on both diameter-thickness ratio and column slenderness ratio. For the CHS sections with a high diameter-thickness ratio, an elastic or an inelastic local buckling may occur prior to the overall buckling, and it may decrease the column strength. Test sections were fabricated from SM400 steel plate of 2.8 mm and 3.2 mm in thickness and were tested to failure. The diameter-thickness ratios of the test sections ranged from 45 to 170 to investigate the effect of local buckling on the column strength. The compression tests indicated that the CHS sections of lower diameter-thickness ratio than the yield limit in the current design specifications showed an inelastic local buckling and a significant post-buckling strength in the local mode. Their ultimate stresses were larger than the nominal yield stress. It was known that the allowable stresses of the sections predicted by the Korean Highway Bridge Design Specifications (2005) were too conservative in comparison with test results. The Direct Strength Method which was newly developed was calibrated for application to the CHS sections by the experimental and numerical results. The Direct Strength Method proposed can predict properly the ultimate strength of CHS section columns whether a local buckling and an overall buckling occur nearly simultaneously or not.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

Study on Hydroelastic Analysis of LNGC Cargo by Global-Local Analysis Technique (전역-국부 해석기법에 의한 LNG 운반선 화물창의 유탄성 해석에 관한 연구)

  • Park, Seong-Woo;Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.83-92
    • /
    • 2007
  • There are many numerical methods to solve large-scale fluid-structure interaction(FSI) problems. However, these methods require very fine mesh to achieve the reasonable numerical accuracy and stability due to the concentrated and volatile hydrodynamic pressure caused by the liquid sloshing. Consequently, the numerical analysis targeting for the long-period time response with the desired numerical accuracy Is very highly time-consuming. The aim of this paper is to suggest a new method to analyze the hydroelastic behavior of the LNGC containment by using the global-local numerical approach. The reliability of the presented method is firstly examined, and then its efficiency is demonstrated by presenting that the long-period local responses of the LNGC containment are obtained with relatively short CPU time.

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Localized Plastic Deformation in Heat-Resistant Alloy and Combined Two-Back Stress Hardening Model (내열합금 구조품에서의 국부적 소성변형과 이중후방응력 경화 모델)

  • Yun, Su-Jin;Lee, Sang-Yeun;Park, Dong-Chang;Yoon, Hyun-Gul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.82-88
    • /
    • 2011
  • In the present work, FEM analyses are carried out to investigate the fractures occurred within the structural part in the course of combustion experiment. The loss of structural integrity stems from the localized deformation and the damage induced due to a severe change in the thermal load. Moreover, the two-back stress evolution model is proposed using the Armstrong-Frederick and the Phillips' rules to depict the plastic deformation, and the continuum damage mechanics is also incorporated into the present model. It is noted that the present model is able to formulate a wide range of constitutive description with ease. The numerical results depicts that a severe strain localization and damage evolution can be obtained depending on the dominant back stress.

Local Buckling Behavior of Tapered Members under Cyclic Loading (반복하중을 받는 변단면부재의 국부좌굴 거동)

  • Lee, E.T.;Kim, Jong Won;Park, Ji Hoon;Shim, Ju Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.321-329
    • /
    • 2006
  • The use of tapered structural members was first proposed by Ami rikian for the economical use of materials.Generaly, tapered members are used in single-story structures with one or more bays and in cantilevered sections of ate architectural representation. If only focused on the section performance, however, the width-to-thickness ratio or t apered ratio can exced regulations. Such a case requires a study on the behavior of tapered members. To investigate the plastic and local buckling behavior of web-tapered beams, seven steel beams were the tapered ratio and the width-to-thicknes ratio. The results of maximum strength, strength deterioration, and stiffnes deterioration were compared.

A Study on the Local Regression Rate of Solid Fuel in Swirl Injection Hybrid Rocket (스월 인젝션 하이브리드 로켓의 고체연료 국부 후퇴율에 관한 연구)

  • Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Gi-Hun;Cho, Jung-Tae;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.77-81
    • /
    • 2008
  • The local regression rate behavior of solid fuel in swirl injection hybrid rocket were studied. In generally, axial injection regression rate was tending to be decrease with axial distance, beyond which increased with increasing axial distance from the leading edge. On the other hand, swirl injection regression rate was high at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection was increased about 54% for the overall regression rate of axial injection. Through this study, it was found that using swirl injector was useful in applying to the small sounding rocket.

  • PDF

Anchorage Zone Design of Precast Prestressed Concrete Bridges (프리캐스트 프리스트레스트 콘크리트 교량 구조물의 정착부 설계에 관한 연구)

  • 임동환;오병환;김수석
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.209-218
    • /
    • 1996
  • The purpose of the present study is to explore the effects of local reinforced type and to suggest reliable failure mechanism and the design criteria on the anchorage zones of the precast prestressed concrete bridges. To accomplish these objectives, a comprehensive experimental and analytical study has been conducted. From this study, the cracking and ultimate load capacities for spirally reinforced anchorage zone are found to be larger than those for orthogonal reinforced anchorage zone. This indicate the effectiveness of spiral reinforcement in controlling the cracking. And realistic failure mechanism and design criteria of prestressed anchorage zones based on the present study are suggested.

A Unified Model of Strain Localization in Concrete (콘크리트 변형률 국소화의 통일된 모형)

  • 송하원;김인순
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.5
    • /
    • pp.115-125
    • /
    • 1997
  • 콘크리트의 변형률국소화는 콘크리트의연화거동에 수반되어 변형이 국부적으로 집중되는 현상이다. 본 연구의 목적은 인장과 압축하중상태에서 콘크리트 부재에 발생하는 콘크리트 변형률 국소화 거동을 해석적으로 재현할 수 있는 통일된 모형을 제안하는 것이다. 본 논문에서는 인장과 압축에 대하여 변형률국소화가 일어나는 콘크리트 부재를 변형률 연화가 일어나는 국소화영역과 탄성제하가 발생하는 비국소화영역으로 구분하여 모델링하는 통일된 모형을 제안하였다. 또한 제안된 모형에서 미시역학적 평균화기법을 이용해 평균등가탄성계수와 수정된 평균등가탄성계수를 구하여 시편의 크기와 국소화영역의 크기에 따는 해석을 수행하였으며 기존의 실험값과 비교하였다. 연구결과, 본 연구에서의 변형률국소화모형이 크기효과를 포함한 콘크리트의 변형률국소화거동 해석에 타당하게 적용될 수 있음을 보여주었다.

A Study on the Seismic Evaluation of Steel Piers by Earthquake Response Characterisitcs (지진응답특성에 의한 강재교각의 내진성 평가에 관한 연구)

  • 권영록;손영호;최광규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.3
    • /
    • pp.45-53
    • /
    • 2000
  • 강재 교각을 갖는 고가교량은 상부구조가 매우 큰 질량을 갖는 거대구조가 되고 규모가 큰 지진운동 하에서 대단히 큰 관성력을 받게 된다. 따라서 탄소성 동적응답 해석에 의해서 강재 교각의 지진거동을 파악하는 것이 필요하다 . 본 연구에서는, 탄소성 동적응답해석을 위한 합리적인 수치해석방법을 제시하고 이를 바탕으로 강재 교각에 대한 내진성 평가를 수행한다. 1995년 고베 지진 시 손상을 받은 강재 교각과 그 이후 재구축된 교각을 모델로 해서 국부좌굴 이전 소성화의 영향만을 고려한 강재 교각의 지진 거동을 파악한다. 입력지진파는 고베 지진시 관측된 Takatori 지진파이고 이를 가속도 진폭 조정하여 사용한다.

  • PDF