• Title/Summary/Keyword: 국부응력해석

Search Result 221, Processing Time 0.025 seconds

The Formation of Serrated Grain Boundaries and Its Influence on Boron Segregation and Liquation Behavior (파형 결정립계 생성이 보론 편석 및 액화거동에 미치는 영향)

  • Hong, H.U.;Kim, I.S.;Choi, B.G.;Yoo, Y.S.;Jo, C.Y.
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.73-73
    • /
    • 2010
  • 합금원소가 다량 첨가된 고합금강, 스테인리스강, Ni기 초내열합금 등은 용접시 혹은 후열처리 동안 열영향부 (HAZ: heat-affected-zone)에서 결정립계를 따라서 액화균열이 종종 발생한다. 이러한 액화균열은 급속한 가열시 HAZ의 결정립계가 국부적으로 용융되어 액상필름을 형성하고, 냉각시 수축으로 인한 인장구속응력에 의해 필름을 따라서 균열이 발생하여 생성된다. HAZ 결정립계 액화는 탄화물, 황화물, 인화물, 보론계 화합물 등이 급가열시 기지와의 반응에 의해 표피 액상을 형성하는 조성적 액화 (constitutional liquation)에 의한 액상의 결정립계 침투로 설명되거나, 결정립계 자체의 용융점을 상당량 낮추는 보론(B), 인(P), 황(S)등의 편석에 의한 국부적 입계 용융으로 주로 연관 지어 해석한다. HAZ 액화균열은 고온 입계균열 현상이므로, 결정립계의 특성에 따라 크게 영향을 받으며 결정립계 character 설계에 의해 액화균열 저항성을 개선시킬 수 있음을 유추할 수 있다. 한편, 본 연구자들은 최근 Ni기 초내열합금에 있어 입계 serration 현상을 새롭게 발견하였으며, 이론적 접근법을 통해 serration을 위한 특별한 열처리 방법을 개발하였다. 형성된 파형입계는 결정학적인 관점에서 조밀 {111} 입계면을 갖도록 분해 (dissociation)되어 낮은 계면에너지를 갖게 됨을 확인하였으며, 입계형상 변화뿐만 아니라 탄화물 특성변화까지 유도하여 크리프 수명을 기존대비 약 40% 정도 향상시킴을 확인하였다. 본 연구에서는 이러한 직선형 입계 대비 'special boundary'로 간주되는 파형입계가 도입될 경우, 보론 편석 및 HAZ 액화거동에 미치는 영향을 고찰하고자 하였다. SIMS (secondary ion mass spectrometry)를 이용하여 열처리 직후 결정립계 보론편석 정도를 비교하였다. 파형입계 시편의 경우, 일반직선형 시편에 비해 결정립계에 보론편석 저항성이 우수함을 확인할 수 있었다. 재현 HAZ 열사이클 시험을 통해 미세조직을 정량적으로 분석하였다. 파형입계 시편 및 일반직선형 시편 모두 최고온도 $1060^{\circ}C$이상부터 입계 탄화물이 기지내로 완전 용해되고 입계가 액화되기 시작하였다. 최고온도별로 입계액화비율을 정량적으로 비교한 결과, 파형입계가 직선입계 대비 훨씬 낮음을 확인할 수 있었으며, 때때로 액화된 필름이 입계를 따라 전파되지 않고 부분적으로 단락되어 있음이 관찰되었다. 액화시험 후 투과전자현미경을 이용한 EDS (energy dispersive spectrometry) 분석을 통해 결정립계 액화의 주요원인은 입계 $M_{23}C_6$의 조성적 액화반응 보다는 보론 편석 (원자 및 $M_{23}(CB)_6$)으로 인한 결정립계 국부용융이 더 유력함을 유추할 수 있었다. 따라서 상기 결과로부터 입계구조가 안정되어 계면에너지가 낮은 파형입계가 보론편석에 대한 저항성이 우수하였으며, 이러한 결과는 액화 저항성에 대응되어 영향을 미침을 알 수 있었다. 게다가 파형입계에 액상 필름이 생성되더라도 낮은 계면에너지에 의해 비롯된 상대적으로 낮은 적심성 (wettability)에 의해 필름이 쉽게 전파되지 않음을 'Smith 입계 wetting 이론'을 이용하여 해석할 수 있었다.

  • PDF

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake (지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향)

  • Kim, Jung-Tae;Hong, Eun-Soo;Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.861-874
    • /
    • 2019
  • A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

A Study on 8-Stage Loading Method of the Scaffolding Module for LNG Carriers (LNG 운반선 비계 모듈의 8단 탑재 방안 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.78-85
    • /
    • 2020
  • The scaffolding system, which is a construction workbench of the cargo containment for a membrane LNG carrier, is a large truss structure composed of various members. To shorten the installation period and process of the scaffolding system, it is effective to enlarge the mounting unit from the existing two stages to eight stages. Owing to the increase in lifting load according to the large size of the module, the stresses around the pin and hole will be increased significantly. In this study, a tensile strength test and contact stress analysis were performed to confirm the structural safety. The relatively large hole deformation was observed visually near the average load generated in the vertical pipe at the top through tensile strength tests. A contact stress calculation confirmed the stress distribution around the hole. The contact problem was dealt with in terms of the Herzian contact stress. The possibility of 8-stage loading was examined by comparing the yield strength and contact stresses of failure critical locations. As a result, the 8-stage loading method of the existing scaffolding material was inadequate, and a new loading method with proper safety is proposed.

Prediction of Cracking and Ultimate Loads of Prestressed Concrete Anchorage Zones in Box-Girder Bridges (프리스트레스트 콘크리트 박스거더 교량 부재의 정착부 균열하중 및 극한하중의 예측)

  • 임동환;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.171-182
    • /
    • 1994
  • Recently, several prestressed concrete box girder bridges have experienced severe cracking along the tendon path when prestress force has been transferred to the anchorage zone. The purpose of the present study is therefore to explore characteristics of the local stress distribution, to study the effects of section geometry of anchorage zones, i.e., tendon inclination, tendon eccentricity and concrett. cover thickness anti to develop recornrncnd;itions for specific design criteria for post~tensioned a:lchorage zones. 7'0 accomplish these objectives, a cc~mprehen sive nonlinar finite element study has been conducted. From this study, realistic forrnulas for crackinq and ultimate load capacities are proposed. 'These equations reasonably well predict the crackinq and ultimate loads of prestressed concrete anchorage zones.

An Analytical Study on Semi-Rigid Connections of 20-Story Braced Steel Structures (20층 가새 철골구조물의 반강접 접합부에 관한 해석적 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.1-8
    • /
    • 2000
  • In this study, the effect of semi-rigid connections on the structural behavior of 20-story braced steel structure has been investigated utilizing the second-order elastic structural analysis program in which nonlinear behavior of beam-column connections and geometric nonlinearity have been considered. Global effects such as P-delta effect and sway at the top have been studied, as well as distribution of member force and combined stress in structural members as local effects. When the structure subjected to horizontal load and vertical load is equipped with lateral-load resisting system such as braces, replacement of shear connection with semi-rigid connection has not caused any problem in P-delta effect and top lateral displacement. Distribution of member forces resulted in reduction in member size for economic structural design.

  • PDF

Finite Element Analysis of Strain Localization in Concrete Considering Damage and Plasticity (손상과 소성을 고려한 콘크리트 변형률 국소화의 유한요소해석)

  • 송하원;나웅진
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.241-250
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develop a plasticity and damage algorithm for the finite element analysis of the strain-localization in concrete. In this paper, concrete member under strain localization is modeled with localized zone and non-localized zone. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion by which the nonlinear strain softening behavior of concrete after peak-stress can be considered is introduced in a thermodynamic formulation of the classical plasticity model. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is also derived. For the modeling of non-localized zone in concrete under strain localization, a consistent nonlinear elastic-damage algorithm is developed by modifying the free energy in thermodynamics. Using finite element program implemented with the developed algorithm, strain localization behaviors for concrete specimens under compression are simulated.

  • PDF

Numerical study on fluid characteristics due to disc shape in a novel mechanical ballast water treatment system (신개념 기계식 선박평형수 처리장치의 디스크 형상에 따른 유동특성에 관한 수치해석 연구)

  • Sohn, Sang-Ho;Kim, Young-Chul;Choi, Kung-Kwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.19-27
    • /
    • 2015
  • As the recent regulation of Internaional Maritime Organization (IMO) is enforced, the advanced technology of Ballast water treatment system (BWTS) is needed to meet its requirements. Until now, there are two kinds of the BWTS technologies such as physical methods (Membrane and UV) and chemical methods (Chlorin and Ozone). However, these conventional methods have some limitations of auxiliary power, low productivity, residual treatment and etc. In order to overcome these problems, this paper introduces the new kind of BWTS based on mechanical principle and investigates the effect of rotating disc shapes on flow characteristics between rotating and stationary discs by computational fluid dynamics (CFD). Planar and Step types can make the local cavitation generated along radius, and Circular type can increase the intensity of shear stress.

A Proposal for Damage Index of Steel Members under Cyclic Loading (반복하중하에서의 강부재에 대한 손상지수 제안)

  • Park, Yeon Soo;Kang, Dae Hung;Oh, Jung Tae;Choi, Dong Ho;Oh, Back Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.613-625
    • /
    • 2002
  • This paper aimed to investigate the damage process of steel parts experiencing failure under strong repeated loading. Likewise, a damage index using various factors related to the damage was proposed. An analysis method for evaluating the damage state was also developed. The damage assessment method focused on the local strain history at the cross-section of the heaviest concentration of deformation. Cantilever-type steel parts were analyzed under uniaxial load combined with a constant axial load, considering horizontal displacement history, Loading patterns and steel types were considered as the main parameters in analyzing the models. The effects of the parameters on the failure modes, deformation capacity, and damage process as seen from the analysis results were also discussed. Each failure process was compared as steel types. In addition, the failure of steel parts under strong repeated loading was determined according to loading. Results revealed that the state of the failure is closely related to the local plastic strain.

Modeling Scheme for Weld-Jointed Parts for Precise Structural Analysis of Large-Scale Structures (대형구조물의 구조해석 정밀도 향상을 위한 용접부 모델링 기법)

  • Jin, Dawei;Park, Sang-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1195-1203
    • /
    • 2012
  • Welding is a well-developed, widely used process for permanently joining metal components. However, the mechanical reliability of welded parts still offers room for improvement. A weld region consists of a fusion zone, a partially melted zone, and a heat-affected zone, and each zone has different material properties. In addition, the geometrical shape of a weld bead or fillet influences the mechanical reliability. A precise structural analysis must consider how a local welded region influences the mechanical behavior of the entire structure. This study focuses on an effective modeling scheme for the weld region. It relies on experimental and numerical methods to determine the proper correlation based on experimental results and to propose a modeling scheme for welded parts.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.