• Title/Summary/Keyword: 국면 전환

Search Result 59, Processing Time 0.014 seconds

국면전환 확산모형을 통한 정보통신산업 발전과정의 특성 국제비교

  • Gu, Jae-Beom;Lee, Jeong-Dong;Jeong, Jong-Uk
    • Proceedings of the Technology Innovation Conference
    • /
    • 2005.02a
    • /
    • pp.268-286
    • /
    • 2005
  • 본 연구에서는 OECD 주요 10개국을 대상으로 국가별 정보통신산업의 성장 추이를 각각 분석하고 국별 특성을 비교하는데 목적이 있다. 이를 바탕으로 각국의 정보통신산업이 경기순환 또는 단계별 발전 속성을 지니고 있는지를 파악하고 국가별 공통점과 특이점을 분석하고자 하였다. 방법론적으로 OECD 국가들의 정보통신산업 GDP 추이 및 성장률의 움직임을 국면전환 (regime change) 확산과정으로 묘사함으로써 각 국가별 정보통신산업 발전 양상의 특징 및 국면전환 시점 등을 포착해 내고자 하였다 추세를 갖는 대표적 확산과정인 GBM 모형과 평균회귀 성향을 갖는 대표적 확산과정인 Vasicek 모형에 각각 마코프 국면전환을 도입하여 국가별 정보통신산업 GDP 및 GDP 성장률의 추이에 있어 국면 전환 여부와 독특한 발전 특성을 비교 분석하였다. 실증분석 결과 정보통신산업 GDP의 성장률과 변동성 사이에는 높은 상관관계가 있었으며, 한국, 멕시코 등은 고성장, 고변동성을, 미국, 프랑스, 일본 등은 저성장, 저변동성의 특성을 보이는 것으로 나타났다 또한 한국의 경우 유일하게 성장률과 변동성 모두 국면전환이 일어나는 국가로 나타났다. 장기평균 성장률의 특성에 따라 분류한 결과, 한국, 일본, 미국, 멕시코, 뉴질랜드는 고성장에서 저성장으로의 국면전환, 핀란드와 덴마크는 경기 순환적 국면전환, 노르웨이, 프랑스, 캐나다는 단일 국면으로 분류할 수 있었다. 특히 한국의 경우 평균회귀 속도와 변동성이 타 국가에 비해 높은 특성을 보여주었다. 본 연구는 정보통신산업을 미시적 분석이나 세부 항목별 정량적 분석을 통해서가 아니라 산업의 발전 속성 및 경기 순환 등의 관점에서 분석함으로써 정보통신산업 정책의 수립 및 집행을 거시적 안목 하에 정립할 수 있게 한다는 데 의의를 가진다. 또한 경제변수를 묘사하는데 있어 국면전환 확산과정을 사용함으로써 향후 실물옵션 등을 통한 기술 및 무형자산의 가치평가에 있어 기초자산의 움직임을 보다 정확히 포착해 낼 수 있는 프로세스를 제공하였다는데 또 다른 의의를 갖는다고 하겠다.

  • PDF

마르코프 국면전환모형을 이용한 KOSPI와 금리의 추이 분석

  • 조재범;김호일
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.177-191
    • /
    • 1998
  • Hamilton(1989)은 시계열 변수가 2가지 이상의 국면을 가지고 있을 때, 현재 어떤 국면이 진행되고 있고 향후 진행될 국면이 무엇일까에 대해 추론이 가능한 시계열모형을 소개하였다. Hamilton모형은 시계열이 2개의 독립적인 관찰불가능한 변수의 합으로 구성되어 있고, 이중 한 변수는 2국면 마르코프 확률과정(2-State Markov Stochastic Process)을 따른다고 가정한다. Hamilton모형은 계수의 추정이 단순하면서도 비 대칭성과 조건부 이분산 등과 같은 복잡한 동학(Dynamics)을 용인한다는 장점이 있다(Lam, 1990). 본 연구에서는 마르코프 국면전환모형에 대해 설명한후, 사례분석으로 KOSPI와 금리의 추이에 따라 국면을 정의하여 각 국면의 특징과 타국면과의 연관성 등을 분석하였다.

  • PDF

Predicting Recessions Using Yield Spread in Emerging Economies: Regime Switch vs. Probit Analysis (금리스프레드를 이용한 신흥경제 국가의 불황 예측: 국면 전환 모형 vs. 프로빗 모형)

  • Park, Kihyun;Mohsin, Mohammed
    • International Area Studies Review
    • /
    • v.16 no.3
    • /
    • pp.53-73
    • /
    • 2012
  • In this study we investigate the ability of the yield spread to predict economic recessions in two Asian economies. For our purpose we use the data from two emerging economies (South Korea and Thailand) that are also known for their openness in terms of exports and imports. We employ both two-regime Markov-Switching model (MS) and three-regime MS model to estimate the probability of recessions during Asian crisis. We found that the yield spread is confirmed to be a reliable recession predictor for Thailand but not for South Korea. The three-regime MS model is better for capturing the Asian financial crisis than two-regime MS model. We also tried to find the duration of economic expansions and recessions. We tested the hypothesis of asymmetric movements of business cycles. The MS results are also compared with that of the standard probit model for comparison. The MS model does not significantly improve the forecasting ability of the yield spread in forecasting business cycles.

A Study on the Volatility of Global Stock Markets using Markov Regime Switching model (마코브국면전환모형을 이용한 글로벌 주식시장의 변동성에 대한 연구)

  • Lee, Kyung-Hee;Kim, Kyung-Soo
    • Management & Information Systems Review
    • /
    • v.34 no.3
    • /
    • pp.17-39
    • /
    • 2015
  • This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.

  • PDF

Estimating Spot Prices of Restructured Electricity Markets in the United States (미국 전기도매시장의 전기가격 추정)

  • Yoo, Shiyong
    • Environmental and Resource Economics Review
    • /
    • v.13 no.3
    • /
    • pp.417-440
    • /
    • 2004
  • For the behavior of the wholesale spot price, a regime switching model with time-varying transition probabilities was estimated using the data from the PJM (Pennsylvania-New Jersey-Maryland) market. By including the temperature as an explanatory variable in the transition probability equations, the threshold effect of changing regime is clearly enhanced. And hence the predictability of the price spikes was improved. This means that the model showed a very clear threshold effect, with a low probability of switching for low loads and low temperatures and a high probability for high loads and high temperatures. And temperature showed a clearer threshold effect than load does. This implies that weather-related contracts may help to hedge against the risk in the cost of buying electricity during a summer.

  • PDF

ETF risk management (ETF 위험관리에 관한 연구)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.843-851
    • /
    • 2017
  • The rise of the Robo-advisor represents one of the most profound shifts in FinTech. It also raises concerns about their financial management. As the most Robo-Advisors utilize ETFs, we seek to determine the appropriate risk management model in estimating 95% Value-at-Risk (VaR) and 99% VaR in this paper. The GARCH and the Markov regime wwitching GARCH are evaluated in terms of the accuracy of probability, the independence of extreme events occurrence and both. The result shows that the Markov regime switching GARCH can be a good ETF risk management tool since it can reflect financial market structural changes into the volatility.

A Comparison Study of Bayesian Methods for a Threshold Autoregressive Model with Regime-Switching (국면전환 임계 자기회귀 분석을 위한 베이지안 방법 비교연구)

  • Roh, Taeyoung;Jo, Seongil;Lee, Ryounghwa
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1049-1068
    • /
    • 2014
  • Autoregressive models are used to analyze an univariate time series data; however, these methods can be inappropriate when a structural break appears in a time series since they assume that a trend is consistent. Threshold autoregressive models (popular regime-switching models) have been proposed to address this problem. Recently, the models have been extended to two regime-switching models with delay parameter. We discuss two regime-switching threshold autoregressive models from a Bayesian point of view. For a Bayesian analysis, we consider a parametric threshold autoregressive model and a nonparametric threshold autoregressive model using Dirichlet process prior. The posterior distributions are derived and the posterior inferences is performed via Markov chain Monte Carlo method and based on two Bayesian threshold autoregressive models. We present a simulation study to compare the performance of the models. We also apply models to gross domestic product data of U.S.A and South Korea.

우리나라 채권수익률(債券收益率)의 이분산성(異分散性)에 관한 연구

  • Jang, Guk-Hyeon;Lee, Jin
    • The Korean Journal of Financial Management
    • /
    • v.13 no.1
    • /
    • pp.203-220
    • /
    • 1996
  • 본 연구에서는 우리나라 채권시장의 변동성 분석과 추정을 위하여 Markov-Switching ARCH (SWARCH)모형과 GMM모형 및 I-GARCH모형을 적용하였다. 관측된 자료는 1993년 1월에서부터 1996년 4월까지의 주별 91일물 양도성 예금증서 수익률이다. 본 연구에서 채권 수익률 분산과정의 추정을 위해 사용하는 SWARCH 모형은 경제나 채권시장의 국면전환으로 말미암아 채권수익률의 변동성이 이질적인 분포에서 오는 경우 서로 다른 분산 국면의 확률적 식별이 가능할 뿐만 아니라 지속성이 GARCH모형보다 작아서 조건부 변동성의 예측력이 뛰어난 모형으로 알려져 있다. 또한 SWARCH모형은 베이즈이론에 의한 확률의 개념으로 국면전환을 추정하기 때문에 주관적인 국면전환시점의 판단이 불필요하다는 장점을 가진다 여러 가지 모형들의 추정결과 I-GARCH 모형과 SWARCH 모형등이 우리나라 단기 채권수익률의 조건부 변동성을 비교적 잘 설명해 내는 것으로 나타났으며 우리나라 단기 채권시장은 1993년 6월부터 1993년 12월초까지, 1994년 7월경부터 1995년 5월경까지 비교적 높은 변동성을 유지하였으며 그후로는 변동성이 등락을 계속하는 것으로 추정되었다. 본 연구의 결과 아직은 태동단계에 머물러 있는 한국 채권시장의 시계열적 특성을 체계적으로 문서화하고 정교하고 다양한 최근 계량기법을 체계적으로 정리하고 응용하여 시장 참가자들의 기회비용과 시행착오의 기간을 단축시키는데 도움을 줄 수 있을 것으로 기대된다.

  • PDF

Volatility Forecasting of Korea Composite Stock Price Index with MRS-GARCH Model (국면전환 GARCH 모형을 이용한 코스피 변동성 분석)

  • Huh, Jinyoung;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.429-442
    • /
    • 2015
  • Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.

The Effects of Financial Market Uncertainty: Does Regime Change Occur During Financial Market Crises? (금융시장 불확실성의 효과: 금융시장 위기 기간 중 국면전환이 발생하였는가?)

  • Kim, Seewon
    • Economic Analysis
    • /
    • v.25 no.3
    • /
    • pp.70-99
    • /
    • 2019
  • Using a stochastic volatility-in-mean VAR model consisting of the KOSPI index, the foreign exchange rate, the government bond rate, and the credit spread, this study investigates the effects of financial market uncertainty on financial markets. We find that higher uncertainty has recessionary effects on financial markets. The effects are especially stronger in equity markets and in won-dollar exchange markets. We also find that the effects of uncertainty become stronger during times of financial market stress compared to normal times. Finally, the results imply that financial market uncertainty may potentially affect the real sector, too.