Proceedings of the Technology Innovation Conference
/
2005.02a
/
pp.268-286
/
2005
본 연구에서는 OECD 주요 10개국을 대상으로 국가별 정보통신산업의 성장 추이를 각각 분석하고 국별 특성을 비교하는데 목적이 있다. 이를 바탕으로 각국의 정보통신산업이 경기순환 또는 단계별 발전 속성을 지니고 있는지를 파악하고 국가별 공통점과 특이점을 분석하고자 하였다. 방법론적으로 OECD 국가들의 정보통신산업 GDP 추이 및 성장률의 움직임을 국면전환 (regime change) 확산과정으로 묘사함으로써 각 국가별 정보통신산업 발전 양상의 특징 및 국면전환 시점 등을 포착해 내고자 하였다 추세를 갖는 대표적 확산과정인 GBM 모형과 평균회귀 성향을 갖는 대표적 확산과정인 Vasicek 모형에 각각 마코프 국면전환을 도입하여 국가별 정보통신산업 GDP 및 GDP 성장률의 추이에 있어 국면 전환 여부와 독특한 발전 특성을 비교 분석하였다. 실증분석 결과 정보통신산업 GDP의 성장률과 변동성 사이에는 높은 상관관계가 있었으며, 한국, 멕시코 등은 고성장, 고변동성을, 미국, 프랑스, 일본 등은 저성장, 저변동성의 특성을 보이는 것으로 나타났다 또한 한국의 경우 유일하게 성장률과 변동성 모두 국면전환이 일어나는 국가로 나타났다. 장기평균 성장률의 특성에 따라 분류한 결과, 한국, 일본, 미국, 멕시코, 뉴질랜드는 고성장에서 저성장으로의 국면전환, 핀란드와 덴마크는 경기 순환적 국면전환, 노르웨이, 프랑스, 캐나다는 단일 국면으로 분류할 수 있었다. 특히 한국의 경우 평균회귀 속도와 변동성이 타 국가에 비해 높은 특성을 보여주었다. 본 연구는 정보통신산업을 미시적 분석이나 세부 항목별 정량적 분석을 통해서가 아니라 산업의 발전 속성 및 경기 순환 등의 관점에서 분석함으로써 정보통신산업 정책의 수립 및 집행을 거시적 안목 하에 정립할 수 있게 한다는 데 의의를 가진다. 또한 경제변수를 묘사하는데 있어 국면전환 확산과정을 사용함으로써 향후 실물옵션 등을 통한 기술 및 무형자산의 가치평가에 있어 기초자산의 움직임을 보다 정확히 포착해 낼 수 있는 프로세스를 제공하였다는데 또 다른 의의를 갖는다고 하겠다.
Communications for Statistical Applications and Methods
/
v.5
no.1
/
pp.177-191
/
1998
Hamilton(1989)은 시계열 변수가 2가지 이상의 국면을 가지고 있을 때, 현재 어떤 국면이 진행되고 있고 향후 진행될 국면이 무엇일까에 대해 추론이 가능한 시계열모형을 소개하였다. Hamilton모형은 시계열이 2개의 독립적인 관찰불가능한 변수의 합으로 구성되어 있고, 이중 한 변수는 2국면 마르코프 확률과정(2-State Markov Stochastic Process)을 따른다고 가정한다. Hamilton모형은 계수의 추정이 단순하면서도 비 대칭성과 조건부 이분산 등과 같은 복잡한 동학(Dynamics)을 용인한다는 장점이 있다(Lam, 1990). 본 연구에서는 마르코프 국면전환모형에 대해 설명한후, 사례분석으로 KOSPI와 금리의 추이에 따라 국면을 정의하여 각 국면의 특징과 타국면과의 연관성 등을 분석하였다.
This study examined the structural changes and volatility in the global stock markets using a Markov Regime Switching ARCH model developed by the Hamilton and Susmel (1994). Firstly, the US, Italy and Ireland showed that variance in the high volatility regime was more than five times that in the low volatility, while Korea, Russia, India, and Greece exhibited that variance in the high volatility regime was increased more than eight times that in the low. On average, a jump from regime 1 to regime 2 implied roughly three times increased in risk, while the risk during regime 3 was up to almost thirteen times than during regime 1 over the study period. And Korea, the US, India, Italy showed ARCH(1) and ARCH(2) effects, leverage and asymmetric effects. Secondly, 278 days were estimated in the persistence of low volatility regime, indicating that the mean transition probability between volatilities exhibited the highest long-term persistence in Korea. Thirdly, the coefficients appeared to be unstable structural changes and volatility for the stock markets in Chow tests during the Asian, Global and European financial crisis. In addition, 1-Step prediction error tests showed that stock markets were unstable during the Asian crisis of 1997-1998 except for Russia, and the Global crisis of 2007-2008 except for Korea and the European crisis of 2010-2011 except for Korea, the US, Russia and India. N-Step tests exhibited that most of stock markets were unstable during the Asian and Global crisis. There was little change in the Asian crisis in CUSUM tests, while stock markets were stable until the late 2000s except for some countries. Also there were stable and unstable stock markets mixed across countries in CUSUMSQ test during the crises. Fourthly, I confirmed a close relevance of the volatility between Korea and other countries in the stock markets through the likelihood ratio tests. Accordingly, I have identified the episode or events that generated the high volatility in the stock markets for the financial crisis, and for all seven stock markets the significant switch between the volatility regimes implied a considerable change in the market risk. It appeared that the high stock market volatility was related with business recession at the beginning in 1990s. By closely examining the history of political and economical events in the global countries, I found that the results of Lamoureux and Lastrapes (1990) were consistent with those of this paper, indicating there were the structural changes and volatility during the crises and specificly every high volatility regime in SWARCH-L(3,2) student t-model was accompanied by some important policy changes or financial crises in countries or other critical events in the international economy. The sophisticated nonlinear models are needed to further analysis.
Journal of the Korean Data and Information Science Society
/
v.28
no.4
/
pp.843-851
/
2017
The rise of the Robo-advisor represents one of the most profound shifts in FinTech. It also raises concerns about their financial management. As the most Robo-Advisors utilize ETFs, we seek to determine the appropriate risk management model in estimating 95% Value-at-Risk (VaR) and 99% VaR in this paper. The GARCH and the Markov regime wwitching GARCH are evaluated in terms of the accuracy of probability, the independence of extreme events occurrence and both. The result shows that the Markov regime switching GARCH can be a good ETF risk management tool since it can reflect financial market structural changes into the volatility.
Autoregressive models are used to analyze an univariate time series data; however, these methods can be inappropriate when a structural break appears in a time series since they assume that a trend is consistent. Threshold autoregressive models (popular regime-switching models) have been proposed to address this problem. Recently, the models have been extended to two regime-switching models with delay parameter. We discuss two regime-switching threshold autoregressive models from a Bayesian point of view. For a Bayesian analysis, we consider a parametric threshold autoregressive model and a nonparametric threshold autoregressive model using Dirichlet process prior. The posterior distributions are derived and the posterior inferences is performed via Markov chain Monte Carlo method and based on two Bayesian threshold autoregressive models. We present a simulation study to compare the performance of the models. We also apply models to gross domestic product data of U.S.A and South Korea.
In this study we investigate the ability of the yield spread to predict economic recessions in two Asian economies. For our purpose we use the data from two emerging economies (South Korea and Thailand) that are also known for their openness in terms of exports and imports. We employ both two-regime Markov-Switching model (MS) and three-regime MS model to estimate the probability of recessions during Asian crisis. We found that the yield spread is confirmed to be a reliable recession predictor for Thailand but not for South Korea. The three-regime MS model is better for capturing the Asian financial crisis than two-regime MS model. We also tried to find the duration of economic expansions and recessions. We tested the hypothesis of asymmetric movements of business cycles. The MS results are also compared with that of the standard probit model for comparison. The MS model does not significantly improve the forecasting ability of the yield spread in forecasting business cycles.
Volatility forecasting in financial markets is an important issue because it is directly related to the profit of return. The volatility is generally modeled as time-varying conditional heteroskedasticity. A generalized autoregressive conditional heteroskedastic (GARCH) model is often used for modeling; however, it is not suitable to reflect structural changes (such as a financial crisis or debt crisis) into the volatility. As a remedy, we introduce the Markov regime switching GARCH (MRS-GARCH) model. For the empirical example, we analyze and forecast the volatility of the daily Korea Composite Stock Price Index (KOSPI) data from January 4, 2000 to October 30, 2014. The result shows that the regime of low volatility persists with a leverage effect. We also observe that the performance of MRS-GARCH is superior to other GARCH models for in-sample fitting; in addition, it is also superior to other models for long-term forecasting in out-of-sample fitting. The MRS-GARCH model can be a good alternative to GARCH-type models because it can reflect financial market structural changes into modeling and volatility forecasting.
For the behavior of the wholesale spot price, a regime switching model with time-varying transition probabilities was estimated using the data from the PJM (Pennsylvania-New Jersey-Maryland) market. By including the temperature as an explanatory variable in the transition probability equations, the threshold effect of changing regime is clearly enhanced. And hence the predictability of the price spikes was improved. This means that the model showed a very clear threshold effect, with a low probability of switching for low loads and low temperatures and a high probability for high loads and high temperatures. And temperature showed a clearer threshold effect than load does. This implies that weather-related contracts may help to hedge against the risk in the cost of buying electricity during a summer.
본 연구에서는 우리나라 채권시장의 변동성 분석과 추정을 위하여 Markov-Switching ARCH (SWARCH)모형과 GMM모형 및 I-GARCH모형을 적용하였다. 관측된 자료는 1993년 1월에서부터 1996년 4월까지의 주별 91일물 양도성 예금증서 수익률이다. 본 연구에서 채권 수익률 분산과정의 추정을 위해 사용하는 SWARCH 모형은 경제나 채권시장의 국면전환으로 말미암아 채권수익률의 변동성이 이질적인 분포에서 오는 경우 서로 다른 분산 국면의 확률적 식별이 가능할 뿐만 아니라 지속성이 GARCH모형보다 작아서 조건부 변동성의 예측력이 뛰어난 모형으로 알려져 있다. 또한 SWARCH모형은 베이즈이론에 의한 확률의 개념으로 국면전환을 추정하기 때문에 주관적인 국면전환시점의 판단이 불필요하다는 장점을 가진다 여러 가지 모형들의 추정결과 I-GARCH 모형과 SWARCH 모형등이 우리나라 단기 채권수익률의 조건부 변동성을 비교적 잘 설명해 내는 것으로 나타났으며 우리나라 단기 채권시장은 1993년 6월부터 1993년 12월초까지, 1994년 7월경부터 1995년 5월경까지 비교적 높은 변동성을 유지하였으며 그후로는 변동성이 등락을 계속하는 것으로 추정되었다. 본 연구의 결과 아직은 태동단계에 머물러 있는 한국 채권시장의 시계열적 특성을 체계적으로 문서화하고 정교하고 다양한 최근 계량기법을 체계적으로 정리하고 응용하여 시장 참가자들의 기회비용과 시행착오의 기간을 단축시키는데 도움을 줄 수 있을 것으로 기대된다.
Using a stochastic volatility-in-mean VAR model consisting of the KOSPI index, the foreign exchange rate, the government bond rate, and the credit spread, this study investigates the effects of financial market uncertainty on financial markets. We find that higher uncertainty has recessionary effects on financial markets. The effects are especially stronger in equity markets and in won-dollar exchange markets. We also find that the effects of uncertainty become stronger during times of financial market stress compared to normal times. Finally, the results imply that financial market uncertainty may potentially affect the real sector, too.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.