• Title/Summary/Keyword: 구조 및 피로 해석

Search Result 321, Processing Time 0.033 seconds

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Repair Procedure and Structural Strength Analysis to Damage of Moon-Pool Structure for Drillship During Construction (드릴쉽 건조 중 문풀 구조 수정 작업 및 구조적 안정성 검토)

  • Yoo, In-Sang;Sohn, Sang-Young;Baek, Seung-Jung;Choi, Young-Lack;Yoo, Hae-Kun;Yoon, Ki-Jeong
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.12-16
    • /
    • 2011
  • During the shipbuilding construction, the repair works will be occurred by various reasons such as the natural disaster, mistakes of engineers or workers, defect of material, and so on. The one of the engineer's responsibilities is to design considering every possibility and to prevent the repair works due to the mistakes during construction stages, but actually it is very difficult and impossible to avoid every mistake. However, it is also the responsibility of engineers to find the best solution for the unavoidable mistakes which is to maintain the capacity of vessel and guarantee the safety for the repair works considering the construction schedules and economic cost. In this paper, it will be introduced the brief of repair works to the structural damage of the moon-pool structure in drillship which is built in our shipyard. For the verification of the structural strength, the fatigue analysis has been carried out based on the guide of Classification society. Furthermore, the modifications of structure design and welding procedure have been applied to avoid the stress concentration in the moon-pool structure.

  • PDF

Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration (궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구)

  • Jung-Youl Choi;Sang-Wook Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1057-1063
    • /
    • 2023
  • The urban railway sleeper floating track, the subject of this study, is an anti-vibration track to reduce vibration transmitted to the structure. currently, the replacement cycle of resilience pad for sleeper floating tracks is set and operated based on load. however, most previous studies were conducted on load-based structural safety aspects, such as fatigue life evaluation of sleeper anti-vibration pads and increase in track impact coefficient and track support stiffness due to increase in spring stiffness. therefore, in this study, we measure the vibration acceleration of the ballast for each analysis section and use the results of 7 million fatigue tests to calculate the spring stiffness of the resilience pad for each section. the spring stiffness of the resilience pad calculated for each section was set as the analysis data and the concrete vibration acceleration was derived analytically. the adequacy of analysis modeling was verified as the analyzed concrete bed vibration acceleration for each section was within the field-measured concrete bed vibration acceleration range. using the vibration acceleration curve according to the derived spring stiffness change, the spring stiffness of the resilience pad is estimated from the measured vibration acceleration. therefore, we would like to present a technique that can estimate the spring stiffness of resilience pad of a running track using the vibration acceleration of the measured concrete bed.

The Vibration Effect by Induced Pulsation Pressure to the Fatigue Crack of the Dampener Fitting Welding Zone (항공기용 유압 펌프의 맥동 압력에 의한 감쇄기 용접부위 균열 개선 연구)

  • Shin, Jae Hyuk;Kim, Tae Hwan;Kang, Gu Heon;Ha, Do Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.677-687
    • /
    • 2017
  • Aircraft can often be exposed to a variety of environments and vibrations such as engine, hydraulic pump, aerodynamic force. These may cause cracking and destruction of the mechanical structure and sub-components by high-cycle fatigue. The axial piston type pump which is usually applied to the aircraft hydraulic pump can be necessarily accompanied by the fluid pulsation by continuous rotation of the axial piston. The fatigue crack was identified at the dampener fitting welding zone to prevent vibration damping during the running of aircraft equipped with this type of pulsation hydraulic pump. In order to understand the root cause of this matter, fracture and component analyses were carried out and also integral type dampener fitting was applied to prevent recurrence of the crack as a subject of design improvements. Structural integrity stress analysis, fatigue analysis, qualification test and aircraft system equipped test was conducted to verify the design validity in application to integral type dampener fitting. The test results were sufficiently satisfactory with the demand lifetime of the material from the various types of test as conducted and the subject of design improvement in this study could be objectively evaluated that shall be applied to the operational aircraft.

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.

Design and Optimization of an Knee Joint of Fully-active Transfemoral Prosthesis for Stair Walking (계단 보행을 위한 능동형 대퇴의지 무릎 관절의 설계 및 최적화)

  • Ahn, Hyoung-Jong;Lee, Kwang-Hee;Hong, Yi;Lee, Chul-Hee
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2016
  • In this study, a fully active transfemoral prothesis with a knee joint is designed considering stair walking conditions. Since the torque at the knee joint required for stair walking condition is relative high compared with the one in normal walking condition, the proposed design has high torque generating mechanism. Moreover, the transfemoral prothesis is designed in compact size to reduce its weight, which is related to comfortable fit and fatigue of patients. Flat type BLDC motor is used for simple and compact structure and various components are used to generate required torque with target working angle and speed. The weight reduction of structure is carried out using optimization method after the initial design process is complete. The optimization is conducted under the load conditions of stair walking. The optimized design is validated via finite element analysis and experiments. As a result, the weight is reduced using topology and shape optimization but maintaining the safety of structure. Also the space efficiency is improved due to its compact size.

Parameter Study for the Application of Ultra Thin Polymer Concrete Pavement (초박층 폴리머콘크리트 포장적용을 위한 매개변수 해석)

  • Yoon, Sang il;Jang, Yong joon;Choi, Jinwoong;Hong, Sungnam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.46-54
    • /
    • 2015
  • Base on Korean design code, previous design code had not considered the effect of pavement on the orthotropic steel deck, however recent design code (Limit State Design Method, 2012) allowed to consider the effect of pavement on the orthotropic steel deck, and efforts to apply the stiffness of pavement to the deck continue. Meanwhile, research on the effect of ultra thin bridge deck overlay on the orthotropic steel deck is inadequate, previous study was limited in about fatigue stress and performance between pavement layer and the orthotropic steel deck. In this study, according to changing of pavement layer stiffness application, pavement materials, pavement thickness and steel deck thickness, analysis of deflection. In addition to base on this result, consider effectiveness of ultra-thin pavement stiffness application on the orthotropic steel deck.

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.

Shape Design of FPCB Connector to Improve Assembly Performance (체결 성능 향상을 위한 FPCB 커넥터의 형상설계)

  • Kim, Dae-Young;Park, Hyung-Seo;Kim, Woong-Kyeom;Pyo, Chang-Ryul;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.347-353
    • /
    • 2012
  • Recently, multi-functionalization (as in smart phones) has been in demand, and the connectors connecting the electrical signals of each board in a cellular phone have become key components. The miniaturization of these connectors is required to achieve a finer pitch design and enhance the electrical signal transfer capacity. However, the miniaturization of connectors reduces the structural safety, and a finer pitch design may cause contact problems under external impact. In this paper, a preliminary design for miniaturized, finer-pitch connectors is suggested for a product with 50 pins and a thickness of 0.2 mm. The assembly process of the FPCB (Flexible Printed Circuit Board) and connector was simulated to ensure the holding force between the two components and avoid overstressing. The design optimization process was performed with the Taguchi method. Fatigue analysis was also conducted to predict the fatigue life of the terminal, and the theoretical and experimental results were compared.

Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor (액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석)

  • Kwak, D.Y.;Im, Y.T.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.