• Title/Summary/Keyword: 구조해석모델

Search Result 3,768, Processing Time 0.033 seconds

A Structural Analysis of Underground Openings in Discontinuous Rock Masses (불연속면의 영향을 고려한 지하암반공동의 구조해석)

  • 김선훈;최규섭;김해홍;김진웅
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 1991
  • In order to predict properly the effects of ground motion associated with earthquakes on underground radioactive waste disposal facilities, an understanding of the structural behavior of an underground opening in discontinuous rock masses subjected to dynamic loadings is essential. This paper includes literature review on computational models for discontinuous rock masses and on mathematical models for the structural analysis of underground opening. Then, structural analyses of underground openings using the distinct element computer program written for the static and dynamic analysis of discontinuous rock masses have been performed.

  • PDF

A Parameter Study of Stuctural Respanse Model in Flexible Pavement Substucture Layers (아스팔트 포장하부구조 층모델 결정에 관한 연구)

  • Choi, Jun-Seong;Seo, Joo-Won
    • International Journal of Highway Engineering
    • /
    • v.5 no.4 s.18
    • /
    • pp.13-22
    • /
    • 2003
  • Several design methods from overseas are employed without considering different conditions such as material properties, climate, and traffic condition in this country. Therefore, there are limitations in application. Therefore, new pavement analysis system which is able to design a pavement efficiently and economically should be set up. In this study, 243 probable sections are classified depending on values of layer thickness and elastic modulus, and the effect of load types for the probable sections are analyzed. The section showing larger load distribution is chosen for analysis. As a result of sensitivity, a layer thickness has more influence on pavement than an elastic modulus does. The stress distribution of FWD test load is larger than that of circular load. This study compares outputs between nonlinear elastic model and linear elastic model. Based on the result, this study finds nonlinear elastic model considering stress condition in the ground is recommended for subbase.

  • PDF

Structural Optimization of Turnover Jig of Cylinder Frame for Medium-speed Diesel Engine (중형엔진 실린더 프레임 턴오버용 지그의 구조 최적화)

  • Lee, Jong-Hwan;Son, Jung-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.31-32
    • /
    • 2006
  • 본 논문은 중형엔진 조립과정에서 실린더 프레임 회전 작업에 사용하는 지그의 구조해석을 수행한 후, 지그의 안전성을 검토하고 지그의 경량화를 통하여 실용적인 지그 설계안을 제안하였다. 현장 작업자가 들 수 있는 최대 무게를 넘는 지그를 구조해석 모델로 선정한 후, 해석모델은 지그, 실린더 프레임, 볼트, 너트, 샤클 핀을 3차원 입체요소로 구성하고 ABAQUS/Standard를 사용하여 재료 비선형 및 접촉을 고려한 구조해석을 수행하였다. 구조최적화를 위하여 응력이 상대적으로 낮은 부위와 작업성을 고려하여 설계변수를 선정하고, 실험계획법의 직교배열표를 활용하여 설계변수에 대한 각 부위의 민감도와 경량화 모델을 도출하였다.

  • PDF

Design Optimization of a RC Building Structure for Minimizing Material Cost (재료비 최소화를 위한 RC 빌딩 구조물의 최적설계)

  • Ahn, Hee-Jae;Park, Chang-Hyun;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.568-573
    • /
    • 2010
  • 본 논문에서는 압축하중 및 풍하중, 지진하중을 받는 RC (Reinforced Concrete) 빌딩 시공에 필요한 부재의 재료비를 최소화하기 위해 부재의 부피를 최소화하는 최적설계를 수행한다. 최적설계 수행을 위해 상용 PIDO (Process Integration and Design Optimization) 툴인 PIAnO (Process Integration, Automation and Optimization)에서 제공하는 다양한 설계기법들을 이용한다. 먼저 실험계획법을 사용하여 실험계획을 세우고, 실험점에 따라 범용 구조해석 프로그램인 MIDAS Gen을 사용하여 구조해석을 수행한다. 그리고 해석결과를 바탕으로 각 응답에 대한 근사모델을 생성한 후 근사모델과 최적화기법을 이용하여 최적설계를 수행하고, 제한조건을 만족하면서 부재의 부피를 최소화함으로써 제안된 설계방법의 유효성을 보인다.

  • PDF

Durability Analysis and Development of Probability-Based Carbonation Prediction Model in Concrete Structure (콘크리트 구조물의 확률론적 탄산화 예측 모델 개발 및 내구성 해석)

  • Jung, Hyunjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.343-352
    • /
    • 2010
  • Recently, many researchers have been carried out to estimate more controlled service life and long-term performance of carbonated concrete structures. Durability analysis and design based on probability have been induced to new concrete structures for design. This paper provides a carbonation prediction model based on the Fick's 1st law of diffusion using statistic data of carbonated concrete structures and the probabilistic analysis of the durability performance has been carried out by using a Bayes' theorem. The influence of concerned design parameters such as $CO_2$ diffusion coefficient, atmospheric $CO_2$ concentration, absorption quantity of $CO_2$ and the degree of hydration was investigated. Using a monitoring data, this model which was based on probabilistic approach was predicted a carbonation depth and a remaining service life at a variety of environmental concrete structures. Form the result, the application method using a realistic carbonation prediction model can be to estimate erosion-open-time, controlled durability and to determine a making decision for suitable repair and maintenance of carbonated concrete structures.

Integrated Analysis of Hydrodynamic Motions and Structural Behavior of Large-Scaled Floating Structures using AQWA-ANSYS Coupling (AQWA-ANSYS 연계에 의한 대형 부유구조체의 파랑운동-구조거동 통합해석)

  • Lee, Du-Ho;Jeong, Youn-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.601-608
    • /
    • 2011
  • In order to design floating structures, it should be required to evaluate hydrodynamic motions and structural behavior under the wave loadings. Then, structural behavior of floating structures should be evaluated including the effects of wave-induced hydraulic pressure subjected to floating structures. However, there has been a problem to exactly evaluate structural behavior of floating structures since it was difficult to directly connect wave-induced hydraulic pressure resulting from hydrodynamic analysis with structural analysis model. In this study, in order to exactly evaluate structural behavior of floating structures under the wave loading, integrated analysis of hydrodynamic motion and structural behavior was carried out to the large-scaled floating structure. The wave-induced hydraulic pressure resulting from hydrodynamic analysis AQWA were directly mapped to structural analysis model ANSYS bia Workbench interface of ANSYS Inc.. As the results of this study, it was found that the integrated analysis of this study evaluate exactly structural behavior of floating structures under the wave loadings since this method can directly reflect wave-induced hydraulic pressure resulting from hydrodynamic analysis to structural analysis model. Also, as the results of structural behavior evaluation, it was found that the tensile stress on the top slab was maximized at the wave direction of $0^{\circ}$, and tensile stress on the bottom slab was maximized at the wave direction of $45^{\circ}$, respectively.

An Improved Finite Element for Structural Analysis of Cable-Supported Structures (케이블 지지구조물의 구조해석을 위한 개선된 유한요소)

  • 김선훈;최창근;송명관
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.117-125
    • /
    • 2001
  • 본 논문에서는 케이블 지지구조물의 비선형 정적해석과 동적해석에 사용할 수 있는 개선된 유한요소가 제시되었다. 케이블의 모델화를 위해 등가탄성계수를 사용하고 처짐곡선을 현수선함수로 가정한 케이블요소가 제안되었다. 프레임 부재에 사용되는 안정함수는 수치적으로 안정한 해를 얻기 위하여 수정되었다. 본 논문에서 제안한 요소의 유용성과 효율성을 검토하기 위하여 다양한 검증문제에 대한 수치해석이 수행되었다. 해석결과 본 논문에서 제시한 유한요소는 케이블 지지구조물의 모델화에 매우 유용하고 효율적으로 사용될 수 있을 것으로 판단된다.

  • PDF

Accuracy analysis of a hydroelastic model of a floating beam (부유식 유탄성 보 모델의 수렴성 연구)

  • Kim, Ki-Tae;Lee, Phill-Seung;Park, Kwang-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.631-634
    • /
    • 2011
  • 본 연구에서는 규칙 파랑 중에 있는 부유식 구조물의 유탄성 거동을 해석 하고, 수치모델의 수렴성을 살펴본다. 부유식 구조물은 보로 모델링 하며, 유체는 이상유체로 가정하여 문제를 해결한다. 보 모델의 경우 Euler-Bernoulli 보 모델과 Timoshenko 보 모델로 나누어 그 특성을 비교 해 본다. 문제의 해석법에 있어서 부유식 구조물의 경우는 유한요소법을, 유체의 경우는 경계요소법을 이용하여, 상호 연성된 방정식을 이끌어 낸다. 상호 연성된 방정식을 토대로 Euler-Bernoulli 보 모델과 Timoshenko 보 모델의 거동 특성을 살펴보고 제시된 수치 모델을 기준으로 수렴성을 분석해 본다.

  • PDF

Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method (부분구조합성법을 이용한 전차량 모델의 진동 특성 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • The finite element (FE) method is generally used to model and simulate the physical behavior of large structures, such as passenger vehicles or aircraft. However, FE analysis involves a very large computation time and cost for developing the analysis model. Therefore, the vibration characteristics of large structural systems are often analyzed using the component mode synthesis (CMS) method, which is one of the substructure synthesis methods. In this study, the vibration characteristics of passenger vehicles are analyzed by using the substructure synthesis method. A passenger vehicle model, which includes a vehicle body, suspension systems, and a sub-frame, is presented. The physical components of the vehicle system are modeled as equivalent substructures using the Craig-Bampton method of CMS. The vibration characteristics, such as the natural frequencies and mode shapes and frequency response, of the vehicle system are determined. The effects of variations in some design parameters on the vibration characteristics of the full vehicle model are also investigated.

A Study on Simplified Analysis and Estimation Method for Evaluation of Structural Safety in Modular Underground Arch Structure (모듈러 지중아치 구조 안전성 검토를 위한 간략 해석 및 평가방법에 관한 연구)

  • Kwon, Tae-Yun;Cho, Kwang-Il;Lee, Wong-Hong;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.55-63
    • /
    • 2022
  • A modular underground arch structure using steel and concrete has been proposed as a structure that has a simple construction process and can effectively resist cross-sectional forces generated during construction and use. Structural behavior of modular underground arch was evaluated about span length less than 15m through 3D structural analysis and test. In general, 2D and 3D structural analysis methods may be applied for structural analysis such as underground arch and tunnels. However, if a 2D or 3D structural analysis method is applied to evaluate the structural safety of a modular underground arch structure, it is difficult to model for structural analysis and it may take an excessively long time to interpret. Therefore, it may not be reasonable as a structural analysis method for considering the structural safety and earth pressure in the design process of a modular underground arch structure. In addition, when a modular underground arch structure is configured for span lengths to which the predetermined cross-section is applicable, it may be reasonable to evaluate only the safety of the structure and cross-section according to the cross-section and load conditions. Therefore, in this study, a structural analysis model using frame elements was proposed for efficient structural safety evaluation. In addition, structural analysis results of the 2D structural analysis model and the simplified analysis model using frame elements were compared, and the structural safety of the modular underground arch structure for a span length of 20m was evaluated with a simplified analysis method.