• Title/Summary/Keyword: 구조진동제어

Search Result 711, Processing Time 0.024 seconds

Application of Semi-active TMD for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 준능동 TMD의 적용)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.607-612
    • /
    • 2007
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. When TMDs are off tuned, TMDs their effectiveness is sharply reduced. This paper discusses the application of MR-TMD, semi-active damper, for the reduction of floor vibrations due to machine and human movements. Here, the groundhook and skyhook algorithm are applied to a single degree of freedom system representative of building floors. And displacement and velocity base control method are applied to reduce t100r vibration. The performance of the STMD is compared to that of the equivalent passive TMD. Comparison of the results demonstrates the efficiency and robustness of STMD with respect to equivalent TMD.

  • PDF

Application of Viscoelastic Dampers for Vibration Control of Buildings Connected by Skybridge (Skybridge로 연결된 구조물의 진동제어를 위한 점탄성감쇠기의 활용)

  • 김진구;류진국
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.63-70
    • /
    • 2003
  • This study investigates the seismic responses of two structures connected by sky-bridges equipped with viscoelastic dampers (VED) in the bridge-building connections. The applicability of the method is verified first by computing RMS responses of two-degrees-of-freedom systems subjected to white noise ground excitation. Then model structures with various number of stories are analyzed using EL CENTRO earthquake excitation to observe the effect of the varying size of VED on reduction of responses. According to the analysis results, there exists a proper size of VED which minimizes the structural responses. It is also observed that the effectiveness of VED increases as the difference of natural frequencies between the two connected structures increases.

  • PDF

Design and Structural Analysis of 2nd Crusher for Useless Wood (폐목재 2차 파쇄기에 대한 설계 및 구조해석)

  • Lee Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.355-360
    • /
    • 2005
  • The objective of this study is design and structural analysis of 2nd crusher for useless wood. Structural analysis and modal analysis were effected in ANSYS and the structural safety was examined in search of displacement, stress, strain. There are avoid to resonance phenomenon by motor control.

  • PDF

Histogram Recorder System에 의한 측정예

  • Han, Eung-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.1
    • /
    • pp.21-27
    • /
    • 1985
  • 차량, 항공, 교량 및 기계구조물 등 랜덤한 실동하중을 받는 구조물의 응력 및 변위, 진동등의 피로 Data 또는 TRAFFIC 등에 의한 건축물의 변위 및 응력발생빈도를 집록하기 위한 Histogram Recorder System에 대한 내용과 측정예를 소개하고자 한다. 본 System은 8(4)챈 널의 스트레인 게이지 또는 스트레인 게이지식 각종변환기와 각종 Sensor로부터의 출력전압 등 Analog 입력을 수록하여, Digital 처리하여 micro computer를 사용, 미리 프로그램된 방식에 따라 측정과 동시에 실동시간으로 해석처리하여 빈도수로서 내부에 기억저장 시키는 것이다. 따라서 본 Histogtram Recorder 본체는 소형으로 견고하며 조금도 제어부분을 갖지 않고 소요의 해석방법의 프로그램백만을 셋트한 개별의 제어기만을 통해가지고 프로그램을 기입만 하며는 그다음은 손하나 안대고도, 그리고도 또 측정중에 제3자에 의한 제어조작 잘못이 발생할 위험도 없고 1 년이상에 걸친 장기간의 .+-. 32 Slices의 각 레벨당 각각 40 억을 넘는 대량의 빈도수를 자동적으로 집록 할 수가 있다. 집록된 Data는 제어장치에 의해 정리된 Datam는 제어장치에 의해 정리된 Histogram의 형태로 읽어나갈 수가 있어 관찰이 가능할 뿐만 아니라 프린터기록 또는 기록장치에 이송시켜서 Data 만 따로 가져올 수가 있어 필요에 따라서는 one line으로 Host computer에 접속시킬 수가 있어 더욱 고도의 처리를 할 수가 있다. 빈도해석프로그램으로서는 극대, 극소, 최대, 최소, 진폭, 시간 등을 pack으로서 준비되어 있어 이에 대한 시스템의 고성 동작 및 성능등을 소개하고자 한다.

  • PDF

Sensitivity analysis for optimal design of piezoelectric structures (압전지능구조물의 최적설계를 위한 민감도 해석)

  • 김재환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.267-273
    • /
    • 1998
  • This study aims at performing sensitivity analysis of piezoelectric smart structure for minimizing radiated noise from the structure, The structure consists of a flat plate on which disk shaped piezoelectric actuator is mounted, and finite element modeling is used for the structure. The finite element modeling uses a combination of three dimensional piezoelectric, flat shell and transition elements so thus it can take into account the coupling effects of the piezoelectric device precisely and it can also reduce the degrees of freedom of the finite element model. Electric potential on the piezoelectric actuator is taken as a design variable and total radiated power of the structure is chosen as an objective function. The objective function can be represented as Rayleigh's integral equation and is a function of normal displacements of the structure. For the convenience of computation, all degrees of freedom of the finite element equation is condensed out except the normal displacements of the structure. To perform the design sensitivity analysis, the derivative of the objective function with respect to the normal displacements is found, and the derivative of the norma displacements with respect to the design variable is calculated from the finite element equation by using so called the adjoint variable method. The analysis results are compared with those of the finite difference method, and shows a good agreement. This sensitivity analysis is faster and more accurate than the finite difference method. Once the sensitivity analysis program is used for gradient-based optimizations, one could achieve a better convergence rate than non-derivative methods for optimal design of piezoelectric smart structures.

  • PDF

Optimal Shape of LCVA considering Constraints on Liquid Level (수위의 구속조건을 고려한 LCVA의 최적형상)

  • Park, Ji-Hun;Kim, Gi-Myun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.429-437
    • /
    • 2009
  • This study addresses the optimal shape of a LCVA maximizing its vibration control effect through numerical parametric study. Various LCVAs having the same total mass and tuning frequency are designed with constraints on the dimensions and water level, and one obtaining the highest equivalent damping ratio of the controlled system is chosen as an optimal solution. As a result, it was found that the limit on the variation of the water level in the vertical liquid column plays an important role constraining the shape of the LCVA. As the LCVA width perpendicular to the plane of liquid motion increases, the equivalent damping ratio rises with slowdown so that determination of the proper width is important in design of the LCVA shape.

Experimental Evaluation of Design Parameters for TLCD and LCVA (TLCD와 LCVA의 설계파라미터에 대한 실험적 평가)

  • Lee, Sung-Kyung;Min, Kyung-Won;Park, Ji-Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.403-410
    • /
    • 2009
  • In this paper, damping coefficients and effective masses of tuned liquid-type column dampers were quantitatively evaluated based on experimental results by using system identification technique. First, shaking table tests were performed for two types of tuned liquid-type column dampers. Then, the dynamic characteristics of dampers used in this study were experimentally grasped from harmonic wave excitation testing results of the dampers with various water level. Finally, damping ratios and effective masses of the dampers with varying water level were quantitatively evaluated from minimizing the errors between numerical and experimental results. It was confirmed from system identification results that damping ratio and effective mass are decreased as the water level of dampers is increased.

Optimal Design of a Piezoelectric Smart Structure for Cabin Noise Control (실내 소음제어를 위한 압전지능구조물의 최적 설계)

  • 고범진;이중근;김재환;최승복;정재천
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.428-434
    • /
    • 1998
  • Optimal design of a piezoelectric smart structure is studied for cabin noise control. A cubic shaped acoustic cavity with a flat plate which covers one side is taken as the problem. The sensor signal is returned to the actuator through a negative gain. The acoustic cavity is modeled using the modal approach which represents the pressure fields in the cavity as a sum of mode shapes of the cavity with unknown coefficients. By using orthogonality of the mode shapes of the cavity, finite element equation for the structure with the influence of the acoustic cavity is derived. The objective function is the average pressure at a certain region, so-called silent zone, in the cavity and the design variables are the locations and sizes of the piezoelectirc actuator and sensor. The optimal design is performed at several frequencies and the results show a remarkable noise reduction. To see the robustness of the optimally designed result, the configuration is used to examine the noise reduction at different frequencies. By adjusting the gain at each frequencies, it is possible to reduce the noise in comparison with the result when the actuator is not activated.

  • PDF

Control of Asymmetrical Tall Buildings under Wind Loading (비대칭 고층건물의 내풍 및 제진 해석)

  • 민경원;김진구;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • In the design of tall building system, the wind loading can be more dominant factor than earthquake loading, and thus, it is important to check the stability and human comfort against wind. Experimental wind tunnel test is usually performed to predict wind behavior of a tall building, however, the test is not cost-effective in the preliminary stage for various structural models of tall building systems. In this regard, the study is focused on the numerical wind analysis of the tall building with and without tuned mass dampers based on the three dimensional model of wind loads and building behavior. As a numerical result, an asymmetrical 102-story tall building is presented to show the results of root mean squares of build responses with and without tuned mass dampers.

  • PDF

A Behavior Test on a Frictional-Wedge-Type Vibration Isolation Device for Vibration Reduction of a Railway Track (열차 진동 저감을 위한 마찰쐐기형 방진장치의 거동 시험)

  • Lee, Chanyoung;Choi, Sanghyun;Lee, Yooin;Kwon, Segon;Koh, Yongsung;Ji, Yongsoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In the case of railway facilities in cities such as a railway station or a bridge, the significance of design for reducing vibration and noise is getting more significant. The vibration control solution is in need especially for an elevated railway station to block vibration of a train and secondary noise effectively. Even though a vertical vibration isolation device is able to be applied effectively to railway facilities such as elevated railway stations which transfer vibration directly from a train to a structure, the development of the vertical device is much slower than a horizontal vibration isolation device. In this paper, a vibration isolation device using wedge type friction material which is currently developing to reduce train-induced vibration effectively is introduced and test results for verification of dynamic performance is also presented. The vibration test on a concrete structure equipped with the developed vibration isolation device is conducted through which the isolation performance and dynamic properties are verified and needs for improving the performance of the device is identified.