본 논문에서는 매입형 영구자석 동기 전동기(IPMSM)의 확장형 역기전력(EEMF) 모델을 이용한 저감차수 병렬형 확장형 칼만 필터(EKF)를 이용한 센서리스 제어 기법을 제안한다. 제안된 센서리스 제어 기법은 간단한 수학적 구조로 매입형 영구자석 동기전동기 구동에 적합한 확장형 역기전력 모델을 이용하여 두 개의 저감 차수 형태로 표현하였다. 이러한 두 모델은 매 샘플링 시간마다 확장형 칼만 필터에 번갈아 연산된다. 행렬의 차수를 저감하여 EKF의 연산시간의 단축과 알고리즘 구현의 부담을 줄였으며 센서리스 제어의 안정적인 상태 벡터의 추정을 위해 병렬로 구동하는 두 모델에 의해 추정된 정보를 이용하였다. 제안된 기법은 실험 결과를 통하여 안정적인 위치 추정 및 속도 추정 성능을 검증 하였으며, 전 차수 EKF와의 연산 시간 비교를 통하여 우수성을 검증하였다.
다중차량 추적시스템에서 칼만 필터는 차량을 추적하기 위하여 일반적으로 사용되는 예측 알고리듬이다. 칼만 필터는 제한된 조건에서 최적의 결과를 나타내는 좋은 특성이 있으나 계산량이 많아 다수의 차량을 실시간으로 추적해야 하는 다중차량 추적시스템에서의 구현은 다소 어려운 단점이 있다. 본 논문에서는 실시간 다중차량 추적시스템의 구현을 위해 비교적 계산이 간단한 순환최소자승 알고리듬을 횡구조의 필터에 적용한 적응 예측기를 도입한다. 칼만 필터를 이용한 추적시스템과 성능을 비교 분석하기 위하여 컴퓨터 그래픽 도구로 제작된 가상 연속영상과 실제 교차로에서 촬영한 동영상을 이용하였다. 모의실험 결과는 본 논문에서 제안한 다중차량 추적시스템이 전용하드웨어 없이 일반 개인용 컴퓨터 환경 하에서 초당 30프레임의 속도로 촬영한 영상의 차량을 실시간으로 추적하는데 사용될 수 있음을 보여준다.
본 논문에서는 병렬형 칼만 필터를 사용한 영구 자석 동기 전동기의 새로운 센서리스 제어 기법이 제안되었다. 제안된 기법은 기존의 확장형 칼만 필터(EKF)와는 달리 reduced-order EKF를 이용한 역기전력 추정 알고리즘을 통해 회전자 위치와 속도를 추정할 수 있고, 각각의 샘플링 시간마다 서로 다른 EKF를 실행하는 병렬형 구조를 사용함으로써 연산시간을 월등히 줄일 수 있다. 따라서 제안된 기법은 기존 EKF의 장점은 그대로 유지하며 단점으로 지적되었던 긴 연산시간 문제를 극복하고 쇄교 자속 값에 민감한 부분도 부분적으로 해결할 수 있다. 또한 운전 영역에 따라 그 형태를 달리함으로써 회전자 속도 및 위치를 안정적으로 추정할 수 있다. 제안된 기법은 실험 결과를 통하여 그 타당성이 검증되었고, 기존 EKF와의 연산 시간 비교를 통하여 우수성이 확인되었다.
복잡한 문제 학습을 위해 여러 가지 형태의 모듈라 네트워크의 구조가 제시되어 왔다. 그 중 엑스퍼트 네트워크와 게이팅 네트워크로 구성된 Mixtures of Experts network은 복잡한 문제를 단순한 문제들로 분해하고, 각각의 엑스퍼트 네트워크가 분해된 단순한 문제를 학습하여 결과를 도출함으로써, 국소적 지역해의 위험을 방지하고 보다 정확한 학습을 가능하게 한다. 그러나 엑스퍼트 네트워크의 수렴은 게이팅 네트워크의 수렴에 많은 영향을 받게 되고, 모든 복잡한 데이터에 대한 엑스퍼트 네트워크의 기여도를 학습하는 게이팅 네트워크는 역전파 알고리즘에 의한 학습 방법으로는 수렴 속도가 떨어진다. 본 논문에서는 게이팅 네트워크를 칼만필터로 학습하여 복잡한 문제에 대한 강건성은 유지하고 보다 빠른 수렴이 가능한 방법을 제시하고자한다.
본 논문에서는 위성 항법 해를 이용하여 INS의 순수항법을 보상하는 INS / GPS 통합 항법 알고리즘을 구성할 때 불안정한 위성 항법 위치 해 출력에도 안정적인 항법 성능을 보장할 수 있는 IMM (interacting multiple model)필터를 설계하였다. INS / GPS 통합 항법 시스템 구조 내에 칼만필터를 서브 필터로 하는 IMM 필터 구조를 정의하였다. IMM필터 구성시 서브필터는 2개로 구성하였으며, 각각의 칼만필터는 INS의 오차 방정식으로부터 위치, 속도, 자세, 센서 오차 등으로 구성한 16차의 상태를 정의하고 추가로 위성항법의 유색 잡음(coloured measurement noise)영향으로 2차를 확장하였다. 제안한 IMM 필터의 성능을 확인하기위해 위성 항법에 임의의 오차를 위도와 경도에 삽입하고 필터의 추종성을 확인하는 것으로 성능을 비교 분석하였다. 몬테카를로 시뮬레이션을 100회 수행하여 결과를 RMS로 비교한 결과 제안한 필터 방식이 오차에 대해 안정적이며 빠른 수렴결과를 보이고 있음을 확인할 수 있었다.
실생활에서의 모바일 로봇 응용이 증가하면서 저비용의 자율 주행 기능이 요구되고 있다. 본 논문은 모바일 로봇의 실내 주행 여건을 고려한 제한된 트랙을 가정하고, 제한된 트랙에서 모바일 로봇의 자율 주행을 지원하는 비젼 기반 실시간 차선 검출 및 추적 시스템을 제안한다. 다양한 형태의 차선 처리와 동작 파리미터의 사전 조정 등을 고려하여 다중 동작 모드를 가진 시스템 구조와 상태 기계를 설계하였으며, 파라미터 조정 모드에서 차선 두께의 기하학적 특성을 바탕으로 컬러 필터의 임계값을 동적으로 조정하고, 곡선 트랙의 불안정 입력 모드와 직선 트랙의 안정 입력 모드에서 차선의 기하학적 그리고 시간적 특성을 바탕으로 차선 특징 픽셀을 적응적으로 추출하고 최소제곱법으로 차선 모형을 추정한다. 추정된 차선 모형으로 트랙 중앙선을 산출하고 움직임 모형을 단순화시켜 선형 칼만 필터를 통해 추적한다. 주행 실험에서 저성능의 로봇 구성에서도 실시간 처리를 통해 제한된 트랙에서 정상적으로 자율 주행이 이루어짐을 확인하였다.
자기교란은 관성/자기센서를 이용한 자세추정시 추정정확도를 저하시키는 주된 원인이다. 본 논문은 저자가 개발한 6축 관성센서를 이용한 센서가속도 추정용 칼만필터의 확장으로서, 9축 관성/자기센서를 이용하여 운동체의 자세가 지속적으로 변화하는 가운데 운동체 주변 자기교란을 정확히 추정하고, 이를 통해 자기교란환경에서도 정확한 3차원 자세를 추정할 수 있는 병렬 칼만필터를 제안한다. 제안하는 필터는 자기교란벡터를 상태변수로 지정하여 명시적으로 추정하며, 병렬구조이므로 설령 극심한 자기교란에 의해 자세추정이 영향을 받더라도 롤과 피치와는 무관하고 요에만 영향이 국한되는 장점을 지닌다. 제안방법은 로봇이나 선박, 항공기처럼 자기적으로 균등하지 않은 환경에서 운용되는 분야에 효과적으로 적용될 수 있다.
본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.
본 논문에서는 기존의 문제점인 얼굴 움직임이 있을 시 시선 식별이 어려운 점과 사용자에 따른 교정작업이 필요하다는 점을 해결하고자 새로운 시선 식별 시스템과 얼굴인식에 필요한 GRNN(: Generalized Regression Neural Network) 알고리즘을 제안한다. Kalman필터를 사용하여 현재 머리의 위치정보를 이용하여 미래위치를 추정하였고 얼굴의 진위 여부를 판단하기 위해서 얼굴의 특징요소를 구조적 정보와 비교적 처리시간이 빠른 수평, 수직 히스토그램 분석법을 이용하여 얼굴의 요소를 검출한다. 그리고 적외선 조명기를 구성하여 밝은 동공효과를 얻어 동공을 실시간으로 검출, 추적하였고 동공-글린트 벡터를 추출한다.
In recent, Kalman filter technique has been much used as one of technique for tracking of the moving target. But some problem are still remained to be resolved. For example, when Kalman filter technique is applied to nonlinear system, the technique is nonoptimal estimator. Therefore, extended Kalman filter is proposed to reduce modeling error for nonlinear system. In this study, an extended Kalman filter in Cartesian coordinates is described for moving target, when the radar sensor measures range, azimuth and elevation angle in polar coordinates. And an approximate gain computation algorithm is proposed. In this approach, Kalman gains are computed for three uncoupled filter and multiplied by a Jacobian transformation determined from the measured target position and orientation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.