Tracking moving objects is one of the most important techniques in motion analysis and understanding, and it has many difficult problems to solve. Especially, estimating and identifying moving objects, when the background and moving objects vary dynamically, are very difficult. It is possible under such a complex environment that targets may disappear totally or partially due to occlusion by other objects. The Kalman filter has been used to estimate motion information and use the information in predicting the appearance of targets in succeeding frames. In this paper, we propose another version of the Kalman filter, to be called structured Kalman filter, which can successfully work its role of estimating motion information under a deteriorating condition such as occlusion. Experimental results show that the suggested approach is very effective in estimating and tracking non-rigid moving objects reliably.
Park, Namjoon;Jung, Suk Hoon;Moon, Yoonho;Han, Dongsoo
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.12
no.4
/
pp.76-86
/
2013
As the basic Kalman filter is limited to be used for indoor navigation, and particle filters incur serious computational overhead, especially in mobile devices, we propose an adaptive hybrid filter for WiFi-based indoor positioning systems. The hybrid filter utilizes the same prediction framework of the basic Kalman filter, and it adopts the notion of particle filters only using a small number of particles. Restricting the predicts of a moving object to a small number of particles on a way network and substituting a dynamic weighting scheme for Kalman gain are the key features of the filter. The adaptive hybrid filter showed significantly better accuracy than the basic Kalman filter did, and it showed greatly improved performance in processing time and slightly better accuracy compared with a particle filter.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.2
/
pp.53-58
/
2021
In this paper, an alternative finite memory structure(FMS) smoothing filter is developed for discrete-time state-space model with a control input. To obtain the FMS smoothing filter, unbiasedness will be required beforehand in addition to a performance criteria of minimum variance. The FMS smoothing filter is obtained by directly solving an optimization problem with the unbiasedness constraint using only finite measurements and inputs on the most recent window. The proposed FMS smoothing filter is shown to have intrinsic good properties such as deadbeat and time-invariance. In addition, the proposed FMS smoothing filter is shown to be equivalent to existing FMS filters according to the delay length between the measurement and the availability of its estimate. Finally, to verify intrinsic robustness of the proposed FMS smoothing filter, computer simulations are performed for a temporary model uncertainty. Simulation results show that the proposed FMS smoothing filter can be better than the standard FMS filter and Kalman filter.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.233-233
/
2023
효율적인 수자원 관리에 필수적인 요소 중 하나는 유역 유출의 정확한 예측이다. 동일한 유역이라 할지라도 과거 기후조건에 대해 매개변수나 모형구조가 최적화된 수문모형은 현재나 미래 기후에 대해 최적이라 할수 없으며, 이에 따라 유역 유출 해석의 불확실성 또한 증가하고 있다. 수문자료동화는 모형의 입력 자료에 따른 불확실성을 줄이고 예측정확도를 향상 시킬 수 있는 방법으로, 수문모형의 상태량이나 매개변수를 업데이트하여 모형 초기 조건의 가능성 높은 추정치를 생성하는 기법이다. 본 연구에서는 국내 댐 상류 유역에 대해 집중형 수문모형과 순차자료동화 기법의 연계 패키지인 airGRdatassim 모형을 적용하여, 앙상블 칼만 필터와 파티클 필터 기법의 수문자료동화 특성을 비교 분석하고, 자료동화와 관련된 하이퍼-매개변수의 불확실성이 수문모의 성능에 미치는 영향을 분석하였다. 자료동화 적용 결과, 두 자료동화 기법 중 파티클 필터에 의한 모의성능이 높았으며 기상강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 설정 등 수문자료동화의 설정과 관련된 하이퍼 매개변수의 불확실성은 두 기법별 뚜렷한 차이를 보였다. 또한, 본 연구에서는 일단위에서 시단위로 확장한 유량 예측 자료동화의 시험 모의결과 및 앙상블 수문동화기법의 도전과제에 대해서도 논의한다.
The Journal of Korean Institute of Information Technology
/
v.16
no.11
/
pp.97-103
/
2018
In this paper, the estimation method for the power signal harmonics is proposed by using the time-varying optimal finite impulse response (FIR) filter. To estimate the magnitude and phase-angle of the harmonic components, the time-varying optimal FIR filter is designed for the state space representation of the noisy power signal which the magnitude and phase is considered as a stochastic process. Since the time-varying optimal FIR filter used in the proposed method does not use any priori information of the initial condition and has FIR structure, the proposed method could overcome the demerits of Kalman filter based method such as poor estimation and divergence problem. Due to the FIR structure, the proposed method is more robust against to the model uncertainty than the Kalman filter. Moreover, the proposed method gives more general solution than the time-invariant optimal FIR filter based harmonic estimation method. To verify the performance and robustness of the proposed method, the proposed method is compared with time-varying Kalman filter based method through simulation.
Journal of the Korea institute for structural maintenance and inspection
/
v.20
no.3
/
pp.42-48
/
2016
Extensive research effort has been made during the last decade to utilize wireless smart sensors for evaluating and monitoring structural integrity of civil engineering structures. The wireless smart sensor commonly has sensing and embedded computation capabilities as well as wireless communication that provide strong potential to overcome shortcomings of traditional wired sensor systems such as high equipment and installation cost. However, sensor malfunctioning particularly in case of long-term monitoring and unreliable wireless communication in harsh environment are the critical issues that should be properly tackled for a wider adoption of wireless smart sensors in practice. This study presents a wireless smart sensor network(WSSN) that can estimate unmeasured responses for the purpose of data recovery at unresponsive sensor nodes. A software program that runs on WSSN is developed to estimate the unmeasured responses from the measured using the Kalman filter. The performance of the developed network software is experimentally verified by estimating unmeasured acceleration responses using a simply-supported beam.
To mitigate natural disasters and efficiently manage water resources, it is essential to enhance hydrologic prediction while reducing model structural uncertainties. This study analyzed the impact of lumped and semi-distributed GR4J model structures on simulation performance and evaluated uncertainties with and without data assimilation techniques. The Ensemble Kalman Filter (EnKF) and Particle Filter (PF) methods were applied to the Namgang Dam basin. Simulation results showed that the Kling-Gupta efficiency (KGE) index was 0.749 for the lumped model and 0.831 for the semi-distributed model, indicating improved performance in semi-distributed modeling by 11.0%. Additionally, the impact of uncertainties in meteorological forcings (precipitation and potential evapotranspiration) on data assimilation performance was analyzed. Optimal uncertainty conditions varied by data assimilation method for the lumped model and by sub-basin for the semi-distributed model. Moreover, reducing the calibration period length during data assimilation led to decreased simulation performance. Overall, the semi-distributed model showed improved flood simulation performance when combined with data assimilation compared to the lumped model. Selecting appropriate hyper-parameters and calibration periods according to the model structure was crucial for achieving optimal performance.
Journal of the Institute of Convergence Signal Processing
/
v.14
no.4
/
pp.243-248
/
2013
In wireless sensor networks, consensus algorithms for dynamic systems may flexibly usable for their data fusion of a sensor network. In this paper, a distributed data fusion filter is implemented using an average consensus based on distributed sensor data, which is composed of some sensor nodes and a sink node to track the mean values of n sensors' data. The consensus filter resolve the problem of data fusion by a distribution Kalman filtering scheme. We showed that the consensus filter has an optimal convergence to decrease of noise propagation and fast tracking ability for input signals. In order to verify for the results of consensus filtering, we showed the output signals of sensor nodes and their filtering results, and then showed the result of the combined signal and the consensus filtering using zeegbee communication.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.15
no.2
/
pp.38-48
/
2001
Kalman Filter model of demand for residental water and consumption pattern wore tested for their ability to explain the hourly residental demand for water in metro-politan distribution system. The daily residental demand can be obtained from Kalman Filter model which is optimized by statistical analysis of input variables. The hourly residental demand for water is calculated from the daily residental demand and consumption pattern. The consumption pattern which has 24 time rates is characterized by data granulization in accordance with season kind, weather and holiday. The proposed approach is applied to water distribution system of metropolitan areas in Korea and its effectiveness is checked.
미사일의 동특성은 공력계수(aerodynamic coefficients)들의 구조 및 그 계수값에 의해 결정된다. 현재까지 공력계수는 풍동시험(wind tunnel test)에 의한 모형법으로 구하는 것이 보편적이었으나 모형과 실제 시스템의 차이에 의해 발생하는 오차, 풍동시험의 오차, 모형의 스케일 팩터(scale factor)오차, 실제 대기조건의 특성에 의한 오차 등에 의해, 시제품을 이용한 실제 비행시험 결과가 풍동시험 모델을 이용한 컴퓨터 시뮬레이션(computer simulation)의 가상 비행 데이타와 차이를 나타내게 된다. 이러한 차이를 감소시키기 위하여 필터 이론을 적용하기 위해서는 수학적 계수 모델이 필요하게 된다. 본 연구에서는 풍동시험모델로부터 3가지의 수학적 모델을 가정하고 이를 이용하여 확장칼만필터(extended Kalman Filter: EKF)와 최대공산법(maximum likelihood method :ML)을 각각 적용시켰을때 추정된 계수치에 의한 가상비행데이타와, 풍동시험모델에 의한 가상비행데이타를 비교하여, 수학적 계수 모델 설정에 따른 각 알고리즘의 추정결과를 알아보고, 이에의해 계수 모델 설정의 방법 및 기준, 그리고 계수구조 설정에 따른 EKF와 ML의 성질을 조사하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.