• Title/Summary/Keyword: 구조적 붕괴

Search Result 646, Processing Time 0.028 seconds

Parametric Study on Reinforced Concrete Columns under Blast Load (주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구)

  • Choi, Hosoon;Kim, Min-Sook;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Columns are the key elements supporting load in structure. Column failure causes the structure to collapse. It is important to evaluate residual strength for damaged columns under blast load for preventing progressive collapse. In this paper, columns were investigated to compare the blast resistance on the change of the number of steel bars within the range of reinforcement ratio. And this study was carried out 4 different analytical models to evaluate effects of aspect ratio. The results indicate that the vertical strain was unaffected by the number of steel bars and aspect ratio. As the number of steel bars facing blast load increase, the blast resisting capacity of the columns was improved in the lateral strain. Also, the analysis results showed that a large moment of inertia of area, as compared to a small one would be superior in residual strength as well as force of restitution.

Study on a Standardized Rockfall-Protection Fence for Various Rockfall Impact Energy using Finite Element Analysis (유한요소해석을 이용한 다양한 낙석 충돌에너지에 대한 표준 낙석방지울타리 형식 제시 연구)

  • Park, Hyungon;Jang, Hyunick;Kim, Bumjoo;Moon, Jiho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.297-302
    • /
    • 2020
  • Korea has many mountainous regions, and slope collapse that can lead to damage in road facilities and loss of lives often occurs. Rockfall-protection facilities are necessary to reduce such damages. Among these facilities, the standard Korean rockfall-protection fence is designed to resist 50 kJ of rockfall impact energy. However, the range of rockfall energy significantly varies depending on the condition of the slope, and it sometimes reaches up to 100 kJ. Thus, providing several types of standardized rockfall-protection fence is necessary to address the different rockfall impact energy for efficient response to rockfalls. This paper presents a study on standardized rockfall-protection fence for various rockfall impact energy using finite-element analysis. According to the results, standardized rockfall-protection fences against rockfall impact energy of 30 and 100 kJ were proposed and have been verified.

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

Structural Safety Assessment of Tie-down for Securing Helicopter (헬리콥터 고정용 안전장치 구조 안전성 평가)

  • Myung Su Yi;Kwang-Chul Seo;Joo Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.372-379
    • /
    • 2023
  • International oil prices are expected to increase from $85 a barrel this year to up to $100 a barrel in the second half of the year; this is likely to increase orders for offshore plants in the global market. One main characteristic of offshore plants is that a large helideck is located on the top side, and aluminum alloys are used as the basic material of the structure for weight reduction and corrosion resistance. Shipowners are increasing the size of helicopters to quickly evacuate lives in the event of an emergency, and the safety use load of devices that can stably secure helicopters to the deck is also required to increase. Owing to the nature of the aluminum material, the structural strength caused by welding is greatly reduced; therefore, the fixing device must be designed by embedding it in the deck and fixing it with bolts. In this study, a model applying aluminum alloy 6082-T6 was developed to develop a helicopter fastening device that can be used for large helidecks (diameter = 28 m). The developed item was verified through nonlinear structural strength calculation to satisfy the load used for the actual fastening condition. The load condition with a 45° showed a lower ultimate strength than the 90° case owing to local plastic collapse. The nonlinear structural collapse behavior showed a result similar to that of the experimental test. The main contents derived from this study are considered to be reference materials when evaluating the structural strength of similar aluminum equipment.

An Evaluation of the Impact of Ammonium Nitrate Explosion Occurred in Beirut Port (베이루트항에서 발생한 질산암모늄 폭발에 의한 영향 평가)

  • Yong-Kyun Yoon
    • Explosives and Blasting
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • On August 4, 2020, 2750 tons of ammonium nitrate stored in a storage warehouse at the Port of Beirut exploded. This explosion is said to be the largest ammonium nitrate explosion ever. By applying the TNT equivalency method, TNT equivalent amount corresponding to the explosion energy of 2750 tons of ammonium nitrate was calculated, and it is found to be 856 tons. Overpressure and impulse were calculated in a range up to 3600 m from the blast using the Kingery-Bulmash explosion parameter calculator tool. As the distance from the explosion center increases, the overpressure and impulse decrease exponentially, but the overpressure decreases more significantly, showing that overpressure is more affected by distance than the impact. As a result of applying the damage criteria to evaluate the effects of overpressure and impulse on the structure, the critical distances at which partial collapse, major damage, and minor damage to the structure occur are found to be approximately 500, 800, and 2200 m from the center of the explosion, respectively. The probit function was applied to evaluate the probability of damage to structures and human body. The points where the probability of collapse, major damage, minor damage, and breakage of window-panes to structures are greater than 50% are found to be approximately 500, 810, 2200, and 3200 m, respectively. For people within 200 m from the center of the explosion, the probability of death due to lung damage is more than 99%, and the 50% probability of eardrum rupture is approximately 300 m. The points with a 100% probability of death due to skull rupture and whole body impact due to whole body displacement are evaluated to be 300 and 100 m, respectively.

Study on the Effective Method of Fire Protection Technology in Railway Tunnel Fire (철도터널 내화성능 기술개발을 위한 내화성능 확보방안에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.86-91
    • /
    • 2010
  • In event of a tunnel fire, all kinds of equipment can be destroyed in high temperature that can exceed $1300^{\circ}C$, fatal structural demage can be caused by spalling of concrete structural elements. To make matters worse, there is a high possibility of the secondary damage which can lead to the collapse of the shear resisting structure. Accordingly, it is time that we developed the technology to counter fires in connection with the fire-resistant design of a tunnel structure. To secure the reliability of the fire-resistance performance of a tunnel structure, it is necessary to assess the fire's behavior on every structural element exposed to the fire as well as to calculate the tunnel fire intensity and the quantity of heat released. In this study, we drew out the fire damage range of each structural element of a tunnel and the minimum thickness of concrete cover for each fire-resistant material through some actual experiments of fire behavior on the structural elements of a tunnel.

An Analytical Study on Composite Beam Performance with Post-Fire Temperature Using ANSYS Program (ANSYS를 이용한 화재 후 온도에 따른 합성보 성능에 관한 해석적 연구)

  • Kwak, Sung-Shin;Choi, Byong-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.391-400
    • /
    • 2019
  • In the case of fire, a structure loses its original stiffness due to the temperature rise, and the load bearing capacity decreases. The loss of structural strength increases with increasing fire time of the structure. To prevent the collapse of buildings, it is very important to understand whether or not the members are damaged. On the other hand, there is insufficient data to be a guideline for diagnosing and evaluating the residual strength of the members in Korea. Therefore, this study examined the resistance performance by Finite-Element-Analysis of composite beams, which are composite structures among structural members. Composite beam modeling was carried out based on the model used in the Electrical Penetration Room (EPR) in cooperation with KEPCO. The heat transfer analysis and structural analysis of the critical phase were performed using ANSYS, a finite element analysis program. ANSYS was used to perform heat transfer analysis and structural analysis at the static analysis. To analyze the residual performance, the temperature distribution of the composite beam and the maximum displacement result of the heat-affected structure analysis were derived and the experimental data and the structural analysis result data were compared and analyzed.

Effect of Backwater Pressure and Restoration by Mattress (사면 Mattress에 의한 배수압변화와 식생복원)

  • Park Hee Yoon;Bae Sang Soo;Jee Hong Kee;Lee Soontak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1383-1387
    • /
    • 2005
  • 사면의 식생이 초기에는 강우에 의해서 표면흐름, 지하수위 증가, 지표수의 침윤에 의해서 성장이 될 수 있으나, 시간이 경과함에 따라 식생에 의한 사면의 안정성을 확보 하는 데에는 큰 영향을 미치지 못한다. 즉, 사면의 식생을 복우언시켜 식물근(뿌리)에 의해서 사면을 안정화 시키기 위해서는 사면의 위치, 고도 및 방향 등에 따라 적응할 수 있는 식물의 선택과 성장에 충분한 수분을 보습할 수 있는 구조의 사면계획과 구조물 설치가 필수적이다. 본 연구에서는 절$\cdot$성토면에서 경사면의 붕괴를 방지하고 식생을 복원하는 방법으로 Mattress Gabion을 제안하였다. 정형화되고 유연성 있는 다공성 Mattress 구조를 통한 식생의 복원은 사면의 안정과 환경친화적인 목적을 모두 만족할 수 있었다. 특히, Gabion 근고공이 설치된 이후에 공극이 큰 Mattress 구조물을 중심으로 식물의 뿌리를 지반에 직접 연결하거나, 식생 활착이 어려운 암반 절취 사면에서도 Mattress 옹벽을 통해서 식물이 양질의 흙에 직접 활착할 수 있도록 설계한 사면 Mattress의 경우는 사면의 안정성 증대와 아울러 지하수의 표면흐름과 투수 및 침윤에 의한 식물의 성장피해를 최소화하고 시간이 지날수록 식생에 의해서 Mattress Gabion 옹벽이 내구성과 유연성을 유지할 수 있었다.

  • PDF

A Study on the Application of C.R.P. Method for Safety Diagnosis of Structures (구조물 안전진단을 위한 C.R.P 기법의 응용에 관한 연구)

  • 신봉호;한성희;윤철규;엄재구
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • Recently, collapse of structures is frequently occurred, so precautionary measures against accidents are requested. In this study, periodic deformations of structure are surveyed using C.R.P technique and these were used to estimate absolute deformation associated with geodetic network. Also, as compared with inclinometer outcome, correlation of these results was obtained. As a results of this study, a difficult problem of control survey was resolved as control points arranged on intervisible parts of structure. And the transformation parameters for absolute deformation analysis were determined incorporating reference network with control network. This eventually led to possibility for analysis of ground behavior, moreover we were able to overcome a limitation of traditional method that could measure only a part of objects.

  • PDF

Structural Analysis of the Pre-weakening of a Cylindrical Concrete Silo for the Application of Overturning Explosive Demolition Method (원통형 콘크리트 사일로의 발파해체 전도공법 적용을 위한 사전취약화 구조해석)

  • Choi, Hoon;Kim, Hyo-Jin;Park, Hoon;Yoon, Soon-Jong
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.12-18
    • /
    • 2009
  • Recently, several cases of destruction of old cylindrical silos by explosive demolition method have been reported. This study deals with the subject concerning the pre-weakening of a cylindrical concrete silo for the application of overturning explosive demolition method. In the past, the pre-weakening operation of structure in explosive demolition has been done by use of some empirical methods. These empirical approaches, however, have possibilities of unexpected accidents. In order to provide a guideline for the pre-weakening of cylindrical silos and similar structures, this paper shows the result of a case study, in which the instability of a silo due to pre-weakening is investigated by a numerical structural analysis before actually conducting pre-weakening and demolition operations.