DOI QR코드

DOI QR Code

Study on a Standardized Rockfall-Protection Fence for Various Rockfall Impact Energy using Finite Element Analysis

유한요소해석을 이용한 다양한 낙석 충돌에너지에 대한 표준 낙석방지울타리 형식 제시 연구

  • Park, Hyungon (Department of Civil & Environmental Engineering, Dongguk University) ;
  • Jang, Hyunick (Korea Expressway Corporation) ;
  • Kim, Bumjoo (Department of Civil & Environmental Engineering, Dongguk University) ;
  • Moon, Jiho (Department of Civil Engineering, Kangwon National University)
  • 박현곤 (동국대학교 건설환경공학과) ;
  • 장현익 (한국도로공사) ;
  • 김범주 (동국대학교 건설환경공학과) ;
  • 문이호 (강원대학교 건축.토목.환경공학부)
  • Received : 2020.06.01
  • Accepted : 2020.06.24
  • Published : 2020.10.31

Abstract

Korea has many mountainous regions, and slope collapse that can lead to damage in road facilities and loss of lives often occurs. Rockfall-protection facilities are necessary to reduce such damages. Among these facilities, the standard Korean rockfall-protection fence is designed to resist 50 kJ of rockfall impact energy. However, the range of rockfall energy significantly varies depending on the condition of the slope, and it sometimes reaches up to 100 kJ. Thus, providing several types of standardized rockfall-protection fence is necessary to address the different rockfall impact energy for efficient response to rockfalls. This paper presents a study on standardized rockfall-protection fence for various rockfall impact energy using finite-element analysis. According to the results, standardized rockfall-protection fences against rockfall impact energy of 30 and 100 kJ were proposed and have been verified.

대한민국은 산악지형이 많으며 사면붕괴로 인한 도로구조물 및 인명피해가 종종 발생한다. 이러한 사면붕괴로 인한 피해를 줄이기 위해서 낙석방지시설이 필요하다. 국내의 낙석방지울타리는 50kJ의 낙석 충돌 에너지에 저항할 수 있도록 설계되었다. 하지만, 낙석에너지의 크기는 사면의 형태 및 조건에 따라 편차가 크며 약 100kJ에 이르기도 한다. 따라서 효율적인 낙석방지울타리의 설계 및 설치를 위해서 여러 종류의 낙석에너지에 맞는 표준화된 낙석방지울타리가 필요한 실정이다. 본 연구에서는 다양한 낙석에너지에 따른 낙석방지울타리의 표준 단면을 유한요소해석을 통하여 제안하였다. 최종적으로 기존 50kJ 낙석방호울타리 외에 30kJ 및 100kJ급 낙석방지울타리를 제안하였다.

Keywords

References

  1. ABAQUS (2018) ABAQUS Analysis User's Guide.
  2. EOTA (2012) ETAG 027 Guidline for European Technical Approval of Falling Protection Kits.
  3. Han, K., Moon, B., Ko, M., Kim, K. (2016) Performance Assessment of Rockfall Protection Fences for the Rockfall Energy of 100kJ Using ETAG 27, J. Korean Soc. Hazard Mitig., 16(2), pp.247-259. https://doi.org/10.9798/KOSHAM.2016.16.2.247
  4. Hwang, Y.C. (2002) Estimation of Absorbing Capacity from Rockfall Protection Fences, J. Korean Geoenvironmental Soc, 3(4), pp.59-66.
  5. Kim, K.D., Ko, M.G., Kim, D.S., Moon, B.G. (2015a) Performance Assessment for Rockfall Protection Systems I: performance Assessment Criteria, J. Korean Soc. Civil Eng., 35(1), pp.63-76. https://doi.org/10.12652/Ksce.2015.35.1.0063
  6. Kim, K.D., Ko, M.G., Kim, D.S., Moon, B.G. (2015b) Performance Assessment for Rockfall Protection Systems II: performance Assessment Criteria, J. Korean Soc. Civil Eng., 35(1), pp.49-61. https://doi.org/10.12652/Ksce.2015.35.1.0049
  7. Kim, K.S., Jang, H.I., You, B.O., Hwang, Y.C. (2005) Standardization of Performance Evaluation Method for Rockfall Protection Fence, 2005 KSCE conference, pp.3485-3488.
  8. Korea Ins titute o f Civil Engineering and Building Technology (KICT) (1999) Development and Operation of Road Cut Slope Management System II, Ministry of Land, Transport and Maritime Affairs, Korea.
  9. Lee, J., Lee, H.-D., Song, J.-K., Moon, J. (2019). A Study on Finite Element Analysis for Energy Absorption Ability of Each Member of Rockfall Protection Fence, J. Korean Soc. Hazard Mitig., 19(4), pp.179-185. https://doi.org/10.9798/kosham.2019.19.4.179
  10. Ministry of Land Infrastructure and Transport (MOLIT) (2008) Road Rockfall Prevention Facility.
  11. You, B.-O., Han, W.-J., Lee, S.-D., Shim, J.-W. (2011) A Study on Bounce Height and Impact Energy Considering Slope Height, Rockfall Weight Using Rockfall Program Considering Slope Height, Rockfall Weight, J. Korean Geoenvironmental Soc., 12(3), pp.47-54.