• Title/Summary/Keyword: 구조적판별

Search Result 348, Processing Time 0.025 seconds

CT 영상에서의 간 영역 추출 및 간 종양 분석

  • Jang Do-Won;Lim Eun-Kyung;Kim Chang-Won;Kim Min-Hwan;Kim Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.183-192
    • /
    • 2006
  • 간세포암은 우리나라에서 전체 암사망자 중 17.2%로 3번째의 흔한 사망원인이며, 간암에 의한 사망률은 인구 10만 명당 약 21명에 이른다. 본 논문에서는 간 내부에서 발생하는 간세포암을 CT 영상에서 자동으로 추출하는 방법을 제안하여 간세포암의 보조진단으로서의 유용성에 대해 알아보고자 한다. 간 내부의 종양을 추출하기 위해 흉부의 윗부분에서 시작하여 2.5mm의 간격으로 약 45-50장 정도를 촬영한 CT 영상들을 대상으로 먼저 간 영역을 추출한다. 간 영역 추출은 먼저 관심이 없는 외부 영역을 갈비뼈를 중심으로 제거한 후 영상의 밝기 정보를 이용하여 각 기관의 영역을 분할 한다. 분할된 영역들은 위 아래로 인접한 영상에서의 분할 영역들과 밝기 값을 비교하여 적절하게 병합하는 3차원적 접근방법을 사용한다. 간 영역은 여러개의 영역들 중에서 간 영역의 구조 및 위치 등의 정보를 활용하여 추출한다. 추출된 간 영역에서 종양 판별과 추출을 위해 종양이 가지는 특징을 분석하여 종양을 추출한다. 전형적인 간세포암은 과혈관성 종양이므로 조영증강 CT 영상에서 주위보다 밝은 색으로 나타나며, 팽창 형성장을 보일 경우에는 구형으로 나타나는 특징이 있다. 이에, 주위 보다 밝은 색을 가지고 둥근형태를 가지는 영역을 종양의 후보영역으로 선정한 후, 그 영상의 위와 아래로 연결되는 영상에서도 같은 위치에서 같은 특징을 보이는 영역이 있으면 간 내부의 종양으로 판별하여 추출한다. 제안된 간 영역 및 간 종양 추출 방법의 정확성을 판별하기 위하여 CT 영상을 대상으로 실험하여 영상의학 전문의가 판단한 결과와 비교하였다. 간 영역 추출은 정확히 모두 추출되었으며, 간 종양 추출 및 판별은 전문의의 보조 진단도구로 활용할 수 있는 가능성이 매우 높다는 것을 확인할 수 있었다.emantic Similarity Measure 등을 단계적으로 수행하여 자동화되고 정확한 규칙식별을 하고자 한다. 이러한 방법들의 조합으로 인하여 규칙구성요소 추출이 되지 않을 후보 단어들의 수를 줄여서 보다 더 정확하고, 지능적인 규칙구성요소 추출 방법론을 제시하고 구현하여 지식관리자의 규칙습득에 대한 부담을 줄여 주고자 한다. 도움을 받을 수 있게 되었다.을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따른 폐환기능의 차이를 보면, 실험군의 술 후 노력성 폐활량이 48시간에 남자($1.78{\pm}0.61L$)가 여자(

  • PDF

Finite Element Model Updating Based on Data Fusion of Acceleration and Angular Velocity (가속도 및 각속도 데이터 융합 기반 유한요소모델 개선)

  • Kim, Hyun-Jun;Cho, Soo-Jin;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.60-67
    • /
    • 2015
  • The finite element (FE) model updating is a commonly used approach in civil engineering, enabling damage detection, design verification, and load capacity identification. In the FE model updating, acceleration responses are generally employed to determine modal properties of a structure, which are subsequently used to update the initial FE model. While the acceleration-based model updating has been successful in finding better approximations of the physical systems including material and sectional properties, the boundary conditions have been considered yet to be difficult to accurately estimate as the acceleration responses only correspond to translational degree-of-freedoms (DOF). Recent advancement in the sensor technology has enabled low-cost, high-precision gyroscopes that can be adopted in the FE model updating to provide angular information of a structure. This study proposes a FE model updating strategy based on data fusion of acceleration and angular velocity. The usage of both acceleration and angular velocity gives richer information than the sole use of acceleration, allowing the enhanced performance particularly in determining the boundary conditions. A numerical simulation on a simply supported beam is presented to demonstrate the proposed FE model updating approach.

화강암 분포 지역에서 화학적 풍화변질지수와 풍화등급의 비교

  • 김성욱;이선갑;류호정;김춘식;김인수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.266-271
    • /
    • 2004
  • 지리적으로 이격된 마산과 서부산 지역의 불국사 화강암 분포지에서 정량적인 풍화도를 판별하기 위해 화학적 풍화지수와 등급을 산정하였다. 연구를 위해 채취된 시료에 대해 풍화 생성광물 동정, 전암분석, 산침수에 의한 이온용출 시험을 실시하였으며, 풍화지수와 지형적인 요소와 풍화속도를 고려하여 풍화등급들 산정하였다. 분석 결과 동일한 물리적, 광물학적 특성을 가지고 있으나 풍화에 따라 생성되는 점토광물의 종류와 함량에서 차이를 보여주며, 풍화의 진행 경로과 범위는 매우 상이한 결과를 보여 준다. 이러한 결과는 암석의 풍화가 모암의 조건 외에 지형, 지질구조, 기온, 강수량과 같은 환경적인 요소에 밀접하게 관련되어 있는 것을 의미할 뿐만 아니라 풍화도 산정에서 환경적인 요소에 대한 해석이 반드시 요구된다.

  • PDF

An Improvement of Personalized Computer Aided Diagnosis Probability for Smart Healthcare Service System (스마트 헬스케어 서비스를 위한 통계학적 개인 맞춤형 질병예측 기법의 개선)

  • Min, Byung-won
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.4
    • /
    • pp.79-84
    • /
    • 2016
  • A novel diagnosis scheme PCADP(personalized computer aided diagnosis probability) is proposed to overcome the problems mentioned above. PCADP scheme is a personalized diagnosis method based on ontology and it makes the bio-data analysis just a 'process' in the Smart healthcare service system. In addition, we offer a semantics modeling of the smart healthcare ontology framework in order to describe smart healthcare data and service specifications as meaningful representations based on this PCADP. The PCADP scheme is a kind of statistical diagnosis method which has real-time processing, characteristics of flexible structure, easy monitoring of decision process, and continuous improvement.

A Verification Method for Handwritten text in Off-line Environment Using Dynamic Programming (동적 프로그래밍을 이용한 오프라인 환경의 문서에 대한 필적 분석 방법)

  • Kim, Se-Hoon;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1009-1015
    • /
    • 2009
  • Handwriting verification is a technique of distinguishing the same person's handwriting specimen from imitations with any two or more texts using one's handwriting individuality. This paper suggests an effective verification method for the handwritten signature or text on the off-line environment using pattern recognition technology. The core processes of the method which has been researched in this paper are extraction of letter area, extraction of features employing structural characteristics of handwritten text, feature analysis employing DTW(Dynamic Time Warping) algorithm and PCA(Principal Component Analysis). The experimental results show a superior performance of the suggested method.

Evaluation of Structural Changes of a Controlled Group Using Time-Sequential SNA (시계열적 SNA를 통한 통제조직의 구조적 변화의 평가)

  • Lee, Woong;Yoon, Seong-Woong;Lee, Sang-Hoon
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1124-1130
    • /
    • 2016
  • A controlled group is closed compared to other organizations, which hinders collection of data and accurate analysis, so that it is hard to evaluate a controlled group's power structure and predict future changes using usual analytical methods including sociological approach. Analyzing a controlled group using SNA can allow for evaluation of inner power structure by revealing the relationships between members and identifying members with central roles given limited data. In this study, in order to evaluate changes in power structure, time-sequential SNA research was conducted by analyzing eigenvector centrality, which reflects individual influence and reveals the overall power structure. The result showed an improvement in accuracy compared to other centralities that contain individual degree or closeness, and made it possible to presume structural changes such as promotion or purge of a member.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Classification of Schizophrenia Using an ANN and Wavelet Coefficients of Multichannel EEG (다채널 뇌파의 웨이블릿 계수와 신경망을 이용한 정신분열증의 판별)

  • 정주영;박일용;강병조;조진호;김명남
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, a method of discriminating EEG for diagnoses of mental activity is proposed. The proposed method for classification of schizophrenia and normal EEG is based on the wavelet transform and the artificial neural network. The wavelet coefficients of $\alpha$ band, $\beta$ band, $\theta$ band, and $\delta$ band are obtained using the wavelet transform. The magnitude, mean, and variance of wavelet coefficients for each EEG band are applied to the input data of the system's ANN. The architecture of the ANN s a four layered feedforward network with two hidden layer which implements the error back propagation learning algorithm. Through the classification of schizophrenia composed of 19 ANNs corresponding to 19 channels, the classifying system show that it can classify the 100% of the normal EEG group and the 86.67% of the schizophrenia EEG group.

The Sentence Similarity Measure Using Deep-Learning and Char2Vec (딥러닝과 Char2Vec을 이용한 문장 유사도 판별)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1300-1306
    • /
    • 2018
  • The purpose of this study is to see possibility of Char2Vec as alternative of Word2Vec that most famous word embedding model in Sentence Similarity Measure Problem by Deep-Learning. In experiment, we used the Siamese Ma-LSTM recurrent neural network architecture for measure similarity two random sentences. Siamese Ma-LSTM model was implemented with tensorflow. We train each model with 200 epoch on gpu environment and it took about 20 hours. Then we compared Word2Vec based model training result with Char2Vec based model training result. as a result, model of based with Char2Vec that initialized random weight record 75.1% validation dataset accuracy and model of based with Word2Vec that pretrained with 3 million words and phrase record 71.6% validation dataset accuracy. so Char2Vec is suitable alternate of Word2Vec to optimize high system memory requirements problem.

Verification Test of High-Stability SMEs Using Technology Appraisal Items (기술력 평가항목을 이용한 고안정성 중소기업 판별력 검증)

  • Jun-won Lee
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.79-96
    • /
    • 2018
  • This study started by focusing on the internalization of the technology appraisal model into the credit rating model to increase the discriminative power of the credit rating model not only for SMEs but also for all companies, reflecting the items related to the financial stability of the enterprises among the technology appraisal items. Therefore, it is aimed to verify whether the technology appraisal model can be applied to identify high-stability SMEs in advance. We classified companies into industries (manufacturing vs. non-manufacturing) and the age of company (initial vs. non-initial), and defined as a high-stability company that has achieved an average debt ratio less than 1/2 of the group for three years. The C5.0 was applied to verify the discriminant power of the model. As a result of the analysis, there is a difference in importance according to the type of industry and the age of company at the sub-item level, but in the mid-item level the R&D capability was a key variable for discriminating high-stability SMEs. In the early stage of establishment, the funding capacity (diversification of funding methods, capital structure and capital cost which taking into account profitability) is an important variable in financial stability. However, we concluded that technology development infrastructure, which enables continuous performance as the age of company increase, becomes an important variable affecting financial stability. The classification accuracy of the model according to the age of company and industry is 71~91%, and it is confirmed that it is possible to identify high-stability SMEs by using technology appraisal items.