• Title/Summary/Keyword: 구조재해석

Search Result 148, Processing Time 0.023 seconds

Hydroelastic Vibration Analysis of Three Dimensional Submerged Structure (3차원 접수구조물의 유체탄성 진동해석)

  • 정기태;강호승;김영복
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.20-27
    • /
    • 1991
  • 본 논문에서는 유체-구조 상호작용해석의 일종의 3차원 접수구조물의 진동해석을 효과적으로 수행하기 위한 해석방법을 제시하기 위하여 동적재해석기법을 검토하였다. 접수구조물의 유한구조 상호작용해석 결과는 구조진동의 관심 주파수역에서는 3차원 연성 부가수질량으로 표현되는 관성력으로 나타난다. 따라서 구조질량행렬에 부가수질량 행렬이 더해져서 전체 관성력으로 표현된다. 이 부가수질량을 추가질량으로 보고 재해석기법을 응용하는 방법을 수치실험을 통해 검증하였다. 이 때 재해석기법이 갖추어야 할 조건은 원구조의 질량과 거의 같은 정도의 질량이 추가되고 또한 완전 연성질량이 추가된 경우에도 정확한 해를 주어야 한다는 것이다. 이를 검증하기 위해 직접재해석기법과 섭동법을 이용한 재해석기법으로 4질량 스프링지지구조에 대한 해석을 수행한 결과 직접재해석기법의 응용이 적합함을 쉽게 입증할 수 있었다. 접수구조물의 예로는 3차원 잠수주상체에 대해 접수진동해석을 수행하였으며 그 결과 선체진동해석에 전통적으로 이용되고 있는 2차원 부가수질량과 3차원 수정계수를 사용한 기준차수법에서는 수지모드와 수평-비틔 연성모드와 같이 서로 독립적인 모드에 대해서는 따로 진동해석을 수행해 주어야 하는 단점이 발견되었다. 이 단점을 보완한 각 모드의 3차원 수정계수행렬을 이용한 재해석기법을 도입하여 모드에 상관없이 동시에 해를 구할 수 있었다. 그러나, 이 방법은 3차원 수정계수가 구해져 있는 경우에 한해서만 적용가능하며 실제 선체진동의 경우에는 10Hz 미만의 저차 주선체 진동에 한해서만 적용가능한 방법이다. 고차의 진도옴드에는 3차원 수정계수를 구할 수 없기 때문에 유체-구조 상호작용 해석결과로부터 얻은 3차원 연성 부가수질량을 이용하게 되며 이 때 이 행렬이 접수구조 표면의 전 자유도와 연성되어 있기 때문에 방대한 방정식을 푸어야 하지만 직접재해석기법을 적용함으로써 정확한 해를 구할 수 있었다. 또한 3차원 부가수질량을 이용한 직접재해석기법은 종래의 2차원 부가수질량과 3차원 수정계수를 이용한 방법에 비해 해석시간 면에서도 전혀 불리한 점이 없는 경제적 방법임이 밝혀졌다. 앞으로 Slamming 혹은 수중폭파 등의 충격하중에 의한 천이 구조응답 해석을 위한 효과적인 방법에 대해서도 연구결과를 발표할 계획이다.

  • PDF

Moving Load Analysis of Bridge Structures Using Experimental Modal Data (실험적 모우드 계수를 이용한 교량의 주행하중 해석)

  • 이형진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.409-420
    • /
    • 2002
  • This paper proposed a technique of structural re-analysis for the evaluation of dynamic responses of bridge structure under moving loads using experimental modal results. For successful structural re-analysis, it is required to have accurate estimation techniques of the modal characteristics of bridge structures. The natural frequencies and mode shapes were identified by direct fourier analysis techniques and damping ratios by the random decrement method, respectively. An interpolation method was also proposed for the extension of mode shape measured on limited DOFs. Second, the structural reanalysis was performed using moving mass model and identified modal parameters. The results from the reanalysis show that the proposed technique is very reasonable to evaluate the actual behavior of bridge structures under moving loads.

Substructuring-Based Structural Reanalysis by Global-Local Approximations (전역-부분 근사화에 의한 부구조화 기반 구조재해석)

  • 서상구;김경일;황충열;황진하
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.141-149
    • /
    • 1996
  • Efficient approximate reanalysis techniques based on substructuring are presented. In most optimal design problems, the analysis precedure must be repeated many times. In particular, one of the main obstacles in the structural optimization systems is high computational cost and time required for the repeated analysis of large-scale structural systems. The purpose of this paper is to show how to evaluate efficiently the sturctural behavior of new designs using information from the previous ones, instead of the multiple repeated analysis of basic equations for successive modification in the optimal design. The proposed reanalysis method is a combined Taylor series expansion and reduced basis method based on substructuring. Several numerical examples illustrate the effectiveness of the method.

  • PDF

Lateral Drift Control of High-rise Buildings using Partial Reanalysis Algorithm (부분재해석 기법을 이용한 고층건물 횡변위제어)

  • Lee, Jae-Cheol;Kim, Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2009
  • This paper alined at the development of a lateral drift control method that is able to quantitatively control the lateral drift of global node. For this, we applied an efficient partial reanalysis algorithm. By using this algorithm, we could recalculate the displacement and member force of the specific node without reanalyzing the entire structure when member stiffness changes partially. The theoretical concepts of the algorithm are so simple that it is not necessary to solve the complicate differential equation or to repeat the analysis of entire structure. The proposed method calculates the drift contribution of each member for the global displacement according to the variation of section sizes by using the algorithm. Then by changing the member sizes as the order of drift contribution, we could control the lateral drift of global node with a minimum quantity of materials. 20 story braced frame structure system is presented to illustrate the usefulness of proposed method. It is shown that the proposed method is very effective in lateral drift control and the results obtained by proposed method are consistent with those of commercial analysis program.

An Efficient Partial Reanalysis Algorithm for the Locally Changed Structures (부분적 강성 변화에 따른 효율적 부분 재해석 알고리즘)

  • Kim Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.459-467
    • /
    • 2004
  • This paper presents an efficient reanalysis algorithm, named PRAS (Partial Reanalysis algorithm using Adaptable Substructuring), for the partially changed structures. The algorithm recalculates directly any displacement or member force under consideration in real time without a full reanalysis in spite of local changes in member stiffness or connectivity_ The key procedures consists of 1) partitioning the whole structure into the changed part and the unchanged part, 2) condensing the internal degrees of freedom and forming the unchanged part substructure, 3) assembling and solving the new stiffness matrix from the unchanged part substructure and the changed members.

Substructuring-based Structural Reanalysis by Multilevel Hybrid Approximation (다단계 혼성근사화에 의한 부구조화 기반 구조 재해석)

  • 황진하;김경일;이학술
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.397-406
    • /
    • 1999
  • A new solution procedure for approximate reanalysis, using the staged hybrid methods with substructuring, is proposed in this study. Displacements are calculated with two step mixed procedures. First step is to introduce the conservative approximation, which is a hybrid form of the linear and reciprocal approximation, as local approximation. In the next step, it is combined with the global approximation by reduced basis approach. Stresses are evaluated from the displacements by matrix transformation. The quality of reanalyzed quantities can be greatly improved through these staged hybrid approximations, specially for large changes in the design. Overall procedures are based on substructuring scheme. Several numerical examples illustrate the validity and effectiveness of the proposed methods.

  • PDF

Design Sensitivity Analysis for the Vibration Characteristics of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Computational Structural Engineering
    • /
    • v.7 no.1
    • /
    • pp.91-98
    • /
    • 1994
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN installed in the super computer CRAY2S, and sensitivity computation is performed by PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

Static Redesign Techniques for Ship Structures (선체구조의 정적 재설계 기법)

  • O.H. Kim;J.W. Park;S.R. Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.123-131
    • /
    • 1992
  • In ship structural design procedures structural analyses are performed using the scantlings of structural elements determined at the initial design stage based on relevent rules and previous experiences. Modifications of scantlings will be carried out in case that the analysis results do nut satisfy design criteria. Reanalysis method s are efficient to analyse the structures of slightly modified using information obtained from the previous analysis. In this paper various approximate reanalysis techniques will be compared and their characteristics will be described. Furthermore sensitivity analyses are adapted to provide information from which selection of most influential design variables will be made and amount of modification can be determined. Redesign procedures described herein are demonstrated using examples.

  • PDF

Structural Fire Analysis of a Composite Beam Protected by Fire-Resistant Materials (내화피복을 적용한 강합성보의 구조화재해석)

  • Jun Won Kang;Moon Soo Kang;Hyejin Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • This paper presents the effects of fire-resistant materials on the temperature and vertical deflection of a composite beam exposed to fire through nonlinear thermo-mechanical analysis. The fire was modeled using the standard fire curve proposed in American Society for Testing and Materials (ASTM) E119. Fire-resistant materials were modeled by reducing the heat transfer coefficient from the air layer to the beam. The temperature and vertical deflection of the uncoated composite beam were measured using a laboratory fire test, and the results of the structural fire analysis were verified through comparison with experimental results. By introducing the fire-resistance effect, the reduction in the temperature and deflection of the beam for the ASTM E119 standard fire can be reasonably estimated. Based on a case study of the heat transfer coefficient, the fire-resistant effect on the thermo-mechanical response of a composite beam in the event of a fire is presented.

Optimization of Reinforced Concrete Piers Based on Efficient Reanalysis Technique (효율적인 재해석 기법에 의한 철근콘크리트 교각의 최적설계)

  • 조효남;민대홍;신만규
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.505-513
    • /
    • 2001
  • In this study, an optimum design algorithm using efficient reanalysis is proposed for seismic design of Reinforced Concrete (RC) piers. The proposed algorithm for optimization of RC piers is based on efficient reanalysis technique. Considering structural behavior of RC piers, the other approximation technique such as artificial constraint deletion is introduced to increase the efficiency of optimization. The efficiency and robustness of the proposed algorithm including the proposed reanalysis technique is demonstrated by comparing it with a conventional optimization algorithm. A few of design examples are optimized to show the applicability of the proposed algorithm.

  • PDF