• 제목/요약/키워드: 구조안전점검

Search Result 197, Processing Time 0.032 seconds

Deep learning algorithm of concrete spalling detection using focal loss and data augmentation (Focal loss와 데이터 증강 기법을 이용한 콘크리트 박락 탐지 심층 신경망 알고리즘)

  • Shim, Seungbo;Choi, Sang-Il;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.253-263
    • /
    • 2021
  • Concrete structures are damaged by aging and external environmental factors. This type of damage is to appear in the form of cracks, to proceed in the form of spalling. Such concrete damage can act as the main cause of reducing the original design bearing capacity of the structure, and negatively affect the stability of the structure. If such damage continues, it may lead to a safety accident in the future, thus proper repair and reinforcement are required. To this end, an accurate and objective condition inspection of the structure must be performed, and for this inspection, a sensor technology capable of detecting damage area is required. For this reason, we propose a deep learning-based image processing algorithm that can detect spalling. To develop this, 298 spalling images were obtained, of which 253 images were used for training, and the remaining 45 images were used for testing. In addition, an improved loss function and data augmentation technique were applied to improve the detection performance. As a result, the detection performance of concrete spalling showed a mean intersection over union of 80.19%. In conclusion, we developed an algorithm to detect concrete spalling through a deep learning-based image processing technique, with an improved loss function and data augmentation technique. This technology is expected to be utilized for accurate inspection and diagnosis of structures in the future.

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

A Study on Factors Influencing Drone Mission Flight for Photogrammetry (Photogrammetry를 위한 드론 임무비행 영향인자 고찰)

  • Park, DongSoon;Kim, Taemin;Soh, Inho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.9-12
    • /
    • 2021
  • 드론 Photogrammetry는 높은 기술적 활용가치가 있는 기술로서, 결과물로 생성하는 3D 디지털 공간정보 모델이 시설물의 비육안 안전점검 및 진단에 활용될 수 있을 뿐만 아니라 디지털 트윈 구축을 위한 가장 기초적이고 핵심적인 수치 데이터를 제공하기 때문이다. 본 연구에서는 드론 Photogrammetry의 적정 품질을 구현하기 위한 임무비행의 다양한 영향인자에 대해 고찰하였다. K-water연구원 누수탐사실습장을 대상으로 드론 사진 촬영 시 비행고도, 비행속도, 중첩도, 카메라 Pitch각의 영향에 대해 연구를 수행하였다. 본 연구에서 비행시간에 영향을 미치는 인자로서 비행고도, 중첩도, 비행속도의 순으로 중요도가 있음을 알 수 있었다. 드론 임무 비행 시 후처리 결과에 가장 큰 영향을 미치는 인자는 중첩도로 나타났다. 중첩도 60% 임무비행은 3D 모델의 geometry 왜곡이 큰 편으로 나타났다. 비행 고도는 GSD (Ground Sampling Distance)와 직접 연계되므로 중요하며, 낮은 고도일수록 높은 품질의 모델링이 가능하다. April Tag를 통한 지상기준점 자동 패턴 인식 기능은 후처리 과정에서 시간 절약이 가능하여 유용하였다. 비행속도에 의한 결과물의 품질은 큰 차이가 없었으나, 수직 구조물의 모서리 부분에 다소 차이가 있었다. 짐벌 Pitch각도에 의한 정사영상 품질의 차이는 크지 않았으나 수직구조물과 평면적 구조물에 따라 각기 다른 촬영각도를 적용하는 것이 바람직하다. 본 연구성과는 향후 보다 다양한 환경에서의 데이터 수집을 통해 최적 디지털 현실 모델링에 기여할 것으로 판단된다.

  • PDF

Performance Evaluation of System Support Assembled with Reused Members (재사용 가설기자재로 조립된 시스템 동바리의 성능 평가)

  • Park, Jun-Beom;Jung, Wook;Bae, Sung-Jae;Kim, Chan-Jin;Yoon, Sung-Hyun;Yoon, Sang-Moon;Kim, Young-Suk;Kim, Jung-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.5
    • /
    • pp.15-24
    • /
    • 2024
  • System support is a facility that is temporarily installed to support vertical loads at construction sites, and is assembled and installed by reused individual members. These characteristics are likely to lead to poor performance of installed system supports, and even though it is institutionalized to check structural safety at the their design phase, accidents continue to occur at the construction site. Accordingly, safety management of system support is implemented through various institutional methods, but the current system does not consider the performance degradation of temporary facilities due to the reuse of individual temporary members. Therefore, the purpose of this study is to verify the performance of assembled system support. In order to do achieve this purpose, the authors divided individual system supports into unused and used groups and performed compression performance test with defined models assembled with those two groups of system supports. The results of this study are expected to be meaningful as a research case that can quantitatively evaluate safety systems and standards for the performance of existing temporary facilities and suggest directions for improving the safety management system of temporary facilities in the future.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Damage Status of Turnout System with Wooden Sleeper of Concrete Track on Urban Transit (도시철도 콘크리트궤도 목침목 분기기의 손상현황)

  • Choi, Jung-Youl;Han, Kyung-Sung;Bong, Jae-Gun;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.379-385
    • /
    • 2019
  • The purpose of this study is to investigate the damage status of wood sleepers on concrete track of urban transit at different locations and to analyze the causes of damages. In addition, the turnout maintenance history during the service period of about 24 years was analyzed in conjunction with the train passing tonnage and that was to compare the current repair history. The most frequent damage components were rail, tie plate, spike and wooden sleeper. And, the damage caused by the defect of the rail fastening system such as spike and tie plate according to the deformation of the wooden sleeper was analyzed as the main type of damage. As a result, the damage of track components of turnout system was on the increase because they are directly affected by the train passing tonnage. The supplementary points of the check sheet for current turnout maintenance were derived and the improvement proposal was suggested based on the research results.

Improvement of the Risk Evaluation Methods for Small Bridges When Investigating the Small Public Facilities (소규모 공공시설 조사 시 소교량의 위험성 평가 방법 개선)

  • Jaesung Shin;Kyewon Jun;Jungsoo Rho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.33-47
    • /
    • 2023
  • Under the "Act on Safety Control of Small Public Facilities (enacted in 2015)", each local government selects and conducts annual safety inspections for small public facilities. Among small public facilities, small bridges pose high risks and are heavily utilized by local residents, making them challenging to manage due to their large numbers and limited resources. Therefore, there is a need for a rational selection method that considers the management capacity of local governments, as well as the establishment of objective risk evaluation and maintenance planning for small hazardous facilities. In this study, we propose a selection method based on structural and functional classification of small bridges, considering the management capacity of local governments. Additionally, we present quantitative evaluation indicators for ten risk evaluation criteria, aiming to facilitate objective risk evaluation.

Analysis of Chloride Ion Penetration Properties into Concrete on Road Facilities Depending on the Deterioration Environments (국도 상 도로시설물 대상 열화환경 조건 별 콘크리트 염화물 침투 특성 분석)

  • Min, Jiyoung;Lee, Jong-Suk;Lee, Tack-gon;Cha, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.102-113
    • /
    • 2021
  • The deterioration environments caused by de-icing salt and airborne chlorides in the seashore, evaluated in the "Detailed guideline for safety and management practice of facilities (performance evaluation)", were reviewed in terms of penetrated chlorides into concrete on various road facilities. Target concrete structures, in this study, were 4 concrete barriers in Gangwon area, 3 concrete barriers and 1 retaining wall in Busan area, and 4 bridges in Gangwon-do, Seoul, Gyeonggi-do, and Busan. The deterioration environments were classified into three categories: direct and indirect de-icing salt attack, and airborne salt attack depending on the distance to seashore and the height of pier, and the penetrated chlorides in to concrete were analyzed. The results showed that (1) the regional deterioration environments were clearly classified by de-icing salt sprayed days (snowfall days), (2) the penetrated chlorides increased significantly when leakage occurred through slabs or expansion joints, and (3) the airborne chlorides affected to a height of 20 m concrete in the seashore, Busan. From these, it could be confirmed that the chloride ion penetration properties depend on the exposed aging environment, member location and height, and deterioration status, even on the same structure, so the selection of target members and location is very important in the inspection and maintenance. If the database of penetrated chlorides properties in various deterioration environments is constructed, it is expected that the proactive durability management on concrete structures will be possible in the field.

Aviation Safety Regulation and ICAO's Response to Emerging Issues (항공안전규제와 새로운 이슈에 대한 ICAO의 대응)

  • Shin, Dong-Chun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.1
    • /
    • pp.207-244
    • /
    • 2015
  • Aviation safety is the stage in which the risk of harm to persons or of property damage is reduced to, and maintained at or below, an acceptable level through a continuing process of hazard identification and risk management. Many accidents and incidents have been taking place since 2014, while there had been relatively safer skies before 2014. International civil aviation community has been exerting great efforts to deal with these emerging issues, thus enhancing and ensuring safety throughout the world over the years. The Preamble of the Chicago Convention emphasizes safety and order of international air transport, and so many Articles in the Convention are related to the safety. Furthermore, most of the Annexes to the Convention are International Standards and Recommended Practices pertaining to the safety. In particular, Annex 19, which was promulgated in Nov. 2013, dealing with safety management system. ICAO, as law-making body, has Air Navigation Commission, Council, Assembly to deliberate and make decisions regarding safety issues. It is also implementing USOAP and USAP to supervise safety functions of member States. After MH 370 disappeared in 2014, ICAO is developing Global Tracking System whereby there should be no loophole in tracking the location of aircraft anywhere in world with the information provided by many stakeholders concerned. MH 17 accident drove ICAO to install web-based repository where information relating to the operation in conflict zones is provided and shared. In addition, ICAO has been initiating various solutions to emerging issues such as ebola outbreak and operation under extreme meteorological conditions. Considering the necessity of protection and sharing of safety data and information to enhance safety level, ICAO is now suggesting enhanced provisions to do so, and getting feedback from member States. It has been observed that ICAO has been approaching issues towards problem-solving from four different dimensions. First regarding time, it analyses past experiences and best practices, and make solutions in short, mid and long terms. Second, from space perspective, ICAO covers States, region and the world as a whole. Third, regarding stakeholders it consults with and hear from as many entities as it could, including airlines, airports, community, consumers, manufacturers, air traffic control centers, air navigation service providers, industry and insurers. Last not but least, in terms of regulatory changes, it identifies best practices, guidance materials and provisions which could become standards and recommended practices.

Workflow Procedures and Applications in BIM-based Design for Safety (DfS) (BIM 기반 설계안전성검토의 업무 절차와 활용 방안에 관한 연구)

  • Jaewoong Hwang;Heetaek Yoon;Junhyun Bae;Youngkon Park
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • A conventional Design for Safety (DfS), introduced to eliminate potential hazards in the design phase proactively, has encountered persistent challenges, such as perfunctory risk assessments and hazard identifications based on 2D drawings and inefficient workflow processes. This study proposes a BIM-based approach to Design for Safety (DfS) to address the limitations of conventional methods, aiming to enhance efficiency and achieve practical safety management benefits. The proposed workflow process for BIM-based DfS has been refined and validated for on-site applicability through various case studies, including risk assessments during the design phase and field applications for safety management activities during the construction phase. Specifically, the critical process of risk assessment within the DfS methodology has also been transitioned to a BIM-based approach. This BIM-based risk assessment process has been evaluated through case studies, encompassing safety reviews for structural design, construction equipment operation, and construction methodology with sequence in design projects. Additionally, the proposed BIM-based DfS has demonstrated exceptional on-site applicability and efficiency, as validated by the application of a BIM deliverable embedded in DfS information for CDE-based daily activity briefing, VR-based safety training, AR-based mitigation measures inspections, and other safety management activities in the construction phase.