• Title/Summary/Keyword: 구조기인소음

Search Result 57, Processing Time 0.024 seconds

Noise, vibration Characteristic Identification and Noise Control of Indoor Air-Conditioner's Cabinet using Operational Deflection Shape (운행 중 변형형상을 이용한 에어컨 실내기 캐비닛의 소음/진동 특성 파악 및 제어)

  • Lee, Seong-Jin;Oh, Jae-Eung;Lee, Jung-Youn;Kang, Tae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.830-833
    • /
    • 2004
  • An indoor package air-conditioner (PAC) has complex noise sources such as motor noise and fluid noise caused by the fan motor, heat transfer and shroud. Sound intensity techniques and ODS(Operational deflection shape) techniques are applied to identify the noise characteristics of an indoor air-conditioner's cabinet. The sound intensity is used to visualize the noise source locations. and the ODS to visualize the vibration pattern and to obtain the dynamic characteristics of the noise source. Acoustic intensity and operational deflection distribution are obtained in space domains as well as frequency domains. Using the visual information of source locations and its dynamic characteristics, the damping patch is applied to reduce structure borne noise in the cabinet. As a result, the noise emitted by the cabinet is reduced by 5dB.

  • PDF

Study on Elevator Induced Structural Vibration Reduction Performance Using Polymer Concrete (폴리머 콘크리트를 이용한 엘리베이터 기인 구조 진동저감 성능 연구)

  • Yeom, Jihye;Kim, Jeong-Jin;Park, Junhong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.90-94
    • /
    • 2021
  • With the increased interest on quiescent place for residential place, the noise generation from facilities needs to be minimized. One important noise source include sounds from operation of elevators. The elevator operates between floors and generates significantly annoying sounds to the nearby living spaces. It is recognized as the significant contributor inducing noise annoyance to residents. Elevator is supported to the building structure at several locations for movements between floors. In this study, the vibration reduction by use of polymer concrete on the support location was demonstrated. By measuring and comparing the vibration generation when supported on cement and polymer concrete, the noise reduction performance was evaluated. The polymer concrete was made in the form of being inserted into the wall that imitates the hoistway. The impact vibration was induced to the bracket and vibration transfer magnitude was measured. The damping ratio was evaluated through normalization and curve fitting of transient response, and comparison was performed for each resin mixing ratio. By use of polymer concrete, it was possible to reduce the vibration generation in an effect manner without sacrifice on the structural rigidity.

A Study on the Structure Improvement of Bracket Housing for Structural Noise and Vibration Reduction in Hydraulic Breaker (유압 브레이커의 구조 소음.진동 저감을 위한 브래킷 하우징의 구조 개선에 관한 연구)

  • Kim, Bong-Suk;Kim, Min-Gi;Byun, Dong-Woo;Lee, Seong-Min;Lee, Soo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.108-115
    • /
    • 2006
  • A hydraulic breaker is widely utilized for many civil engineering areas for the purpose of destroying objects such as rocks, concrete, or road. However, since the high-level noise and vibration by a hydraulic breaker is one of the major sources of environmental noise and recently the environmental regulations on construction equipments are also getting more strengthened, in order to solve such problems, it is certainly necessary to design and develop a hydraulic breaker with low noise and low vibration. This research is to understand the noise characteristics through the noise test and acoustic analysis of the bracket housing in a hydraulic breaker and to identify the element part to be modified based on the result of the element contribution analysis. An improved breaker model including X-typed rib shows the result of low-noise level within target frequency band compared with a commercial breaker model.

A Study on the Transmitted Energy Contribution Analysis of SUV Engine Mount by Vibration Power Flow Measurement (진동 파워흐름 측정을 통한 SUV용 엔진 마운트의 에너지 전달 기여도 분석에 관한 연구)

  • Kim, Su-Gon;Lee, Sang-Kwon;Kim, Sung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.400-410
    • /
    • 2008
  • Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Many methods which analyze noise transfer path have been generally used for structure-borne noise. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation for each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow measurement has been used for a simple isolation system or a laboratory based isolation system. This paper identifies the transfer path of booming noise in a SUV. The powertrain used for test has a in-line 4cylinder engine and 5-shift auto-transmission. This powertrain is transversely supported by four isolators. We calculated the energy flow throughout four isolator by the measurement of power flow and the contribution of energy flow at each isolator.

A study on the noise reduction method of transformer using harmonic response analysis (조화응답해석을 이용한 변압기의 소음저감 방법에 관한 연구)

  • Chang-Seop Kim;Won-Jin Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.277-284
    • /
    • 2024
  • This study proposes a method to predict noise reduction based on noise-reduction measures, using harmonic response analysis, for transformer design. The dynamic elastic coefficients of the components comprising the actual transformer were determined by manufacturing the materials of the transformer components into simple-shaped specimens, followed by a comparison of the modes between the experiments and the analyses. A finite element model of the transformer was implemented, and harmonic response analysis was performed by deriving the exciting force of the transformer. Subsequently, the theoretical sound power level of the transformer was derived from the results of the harmonic response analysis. Finally, noise reduction measures were established, and the noise reduction amounts were compared between the experiments and the analyses, before and after applying the measures. Through the comparison and analyses of the noise reduction measures, it was confirmed that the trends in the experiments and analyses matched.

Experimental Investigation of Creep Groan Noise (크립 그론 소음 특성에 대한 실험적 연구)

  • Kang, Kyung Min;Jeon, Hyun Cheol;Kang, Yeon June;Cho, Min Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.673-678
    • /
    • 2013
  • Creep groan noise occurs at low frequencies immediately after releasing brake pressure or when a car stops. This noise can be used to predict problems in not only the brake system but also the vehicle system. Because of its complexity, it is difficult to determine its characteristics. Therefore, most improvements are conducted by changing the brake pad, and it still remains difficult to conduct a test using a vehicle. In this study, the characteristics of creep groan noise and the effects from a vehicle system are investigated by using vehicles and an NVH chassis-dynamometer through various tests. A new evaluation method for creep groan noise by using a vehicle is proposed, and the possibility of reduction schemes from the viewpoint of the vehicle system is confirmed from the results mentioned above.

An Analysis of the Sound Propagation between Rooms with Different Mediums (서로 다른 매질을 갖는 격실사이의 음파전달해석)

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.402-407
    • /
    • 2013
  • In this paper, an analysis of sound propagation between two rooms with different mediums is discussed. Statistical energy analysis (SEA) is used to consider energy equilibrium among subsystems associated with the sound pressure levels in two rooms and the vibration level of the wall between rooms. Effect of the sound radiation from the structure-borne noise of the wall on sound pressure level of the receiving room is investigated. For a numerical example, sound propagation between engine room and water tank joined by a steel plate whose size is $8.4{\times}4$ m, is considered. It is found that when the critical frequency of the plate is above the frequency range of interest, the sound pressure level in the water tank is dominated by sound transmission through the plate, while sound radiation from the structure-borne noise of the plate is negligible except low frequency range below 63 Hz.

Selection of Fitness Function of Genetic Algorithm for Optimal Sensor Placement for Estimation of Vibration Pattern of Structures (구조물의 진동장 예측 최적센서배치를 위한 유전자 알고리듬 적합함수의 선정)

  • Jung, Byung-Kyoo;Bae, Kyeong-Won;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.677-684
    • /
    • 2015
  • It is often necessary to predict the vibration patterns of the structures from the signals of finite number of vibration sensors. This study presents the optimal placement of vibration sensors by applying the genetic algorithm and the modal expansion method. The modal expansion method is used to estimate the vibration response of the whole structure. The genetic algorithm is used to estimate the optimal placement of vibration sensors. Optimal sensor placement can be obtained so that the fitness function is minimized in the genetic algorithm. This paper discusses the comparison of the performances of two types of fitness functions, modal assurance criteria(MAC) and condition number( CN). As a result, the estimation using MAC shows better performance than using CN.

Tools to Understand Interior Noise due to Road Excitation in Cars (노면 가진에 의한 실내 소음 해석 방법)

  • Taewon Kang;Sang-Gyu Lim
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1158-1165
    • /
    • 1998
  • Low frequency interior noise in cars is mainly due to structure-borne excitations which are related with road excitation and component vibrations such as suspension and engine mounts. In order to analyze the annoying interior noise. a technique (Transfer Path Analysis) is introduced to find a noise source and the path of that noise. In this study, TPA is reviewed theoretically and applied to investigate the case when the low frequency interior noise at front seat due to road excitations needs to be optimized. The subjective and objective appraisal was performed under the conditions that a testing vehicle traveled on asphalt at 30 km/h. so that the low frequency to be eliminated was detected. The related vibration and noise data for TPA were measured on running and static vehicle. The results reveal that the noise contribution along the z-direction of trailing arm is prominent to low frequency interior noise.

  • PDF

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.