• 제목/요약/키워드: 구조기반 검색

검색결과 1,173건 처리시간 0.027초

배추의 조직 특이적 발현유전자 데이터베이스 (The Brassica rapa Tissue-specific EST Database)

  • 유희주;박신기;오미진;황현주;김남신;정희;손성한;박범석;문정환
    • 원예과학기술지
    • /
    • 제29권6호
    • /
    • pp.633-640
    • /
    • 2011
  • 배추는 배추속 식물의 A genome을 대표하는 모델로서 다양한 배추과 작물의 유전학 및 유전체학과 육종연구의 기반이 되는 중요한 작물이다. 최근 들어 배추 유전체 해독이 완료됨에 따라 유전체의 기능 연구가 보다 활발히 진행될 것으로 기대된다. 유전체 정보로부터 유전자의 구조를 예측하고, 기능을 분석하여 프로모터를 포함한 유용 유전자를 개발하기 위한 필수 재료로 이용되는 것이 다양한 조직 또는 실험 처리로부터 생성된 발현 유전자 데이터이다. 2011년 7월 현재 공공 데이터베이스에는 39개의 cDNA library로부터 분석된 147,217개의 배추 발현유전자가 보고되어 있다. 그러나 이들 발현 유전자들은 체계적으로 분석되거나 데이터베이스 형태로 정리되어 있지 않기 때문에 연구자들이 유전자 서열로부터 유용한 정보를 추출하여 사용하기 어려운 문제점이 있다. 따라서 해독 완료된 배추 유전체와 함께 발현 유전자 정보를 보다 잘 활용하기 위하여 배추의 조직 특이적 발현유전자 데이터베이스인 BrTED를 개발하였다. 데이터베이스는 EST 서열 처리-정보 검색 단위와 조직특이성 발현 특성 분석 단위로 이루어져 있으며, 각 정보들은 상호 연결되어 유기적인 검색 환경을 제공하게 하였다. BrTED는 23,962개의 단일 조합 유전자서열을 포함하고 있으며, 각 서열들의 유전자 주석과 암호화하고 있는 단백질의 기능을 동시에 제공한다. 또한 각 단일 조합 유전자서열들의 조직별 발현 특이성을 통계 분석을 통해 조사하여 연구자의 검색 기준에 따라 제공한다. BrTED의 실효성을 검증하기 위하여 데이터베이스를 통해 조직 특이적 발현 유전자 29개를 선발하고, 이들의 발현 특성을 RT-PCR로 확인한 결과, 선발한 유전자 모두 목표한 조직에서 특이적이거나 강한 발현을 보였다. BrTED는 조직 특이적 발현유전자를 신속하게 선발할 수 있는 공공 데이터베이스로서 배추의 기능 유전체 연구뿐만 아니라 근연 배추속 작물의 유전학과 유전체학 연구에 유용한 공공 연구 자원으로 이용될 수 있을 것이다.

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.

기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구 (A Study on Intelligent Value Chain Network System based on Firms' Information)

  • 성태응;김강회;문영수;이호신
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.67-88
    • /
    • 2018
  • 최근까지도 중소기업의 지속성장 및 경쟁력 확보에 대한 중요함을 인식함에 따라, 정부 차원에서의 유형 자원(R&D 인력, 자금 등)에 대한 지원이 주로 투입되어 왔다. 그러나 사업지원의 적절성이나 효과성, 효율성 면에서 서로 상충되는 정책부분이 존재하여 과소 지원이나 중복 지원 등 지원체계의 비효율성 문제가 제기되어온 것도 사실이다. 정부나 기업 관점에서는 중소기업의 한정된 자원으로 인해, 외부와의 협력을 통한 기술개발 및 역량강화가 기업의 경쟁우위를 창출하는 근간이라 보고 있으며, 이를 위한 가치창출 활동을 강조하고 있다. 기업 레벨에서의 지식생태계 구축을 통해 일련의 가치사슬로부터 기업거래 관계를 분석하고 결과를 가시화할 수 있는 밸류체인 네트워크 분석이 필요한 것도 이 때문이다. 특허/제품/기업명 검색을 통해 관련 제품의 정보나 특허 보유 기업의 기술(제품) 현황 정보를 제공하는 기술기회발굴시스템(Technology Opportunity Discovery system), 기업(재무)정보와 신용정보을 열람하게 해주는 CRETOP이나 KISLINE 등은 존재하고 있으나 밸류체인 네트워크 분석기반으로 유사(경쟁)기업의 리스트나 향후 거래 가능한 잠재 거래처 정보를 제공해주는 시스템은 부재한 실정이다. 따라서, 본 고에서는 KISTI에서 개발 운영중인 기업 비즈니스 전략수립 지원 파트너인 '밸류체인 네트워크 시스템(Value Chain Network System : VCNS)'을 중심으로, 탑재된 네트워크 기반 분석모듈의 유형, 이를 지원하는 참조정보 및 데이터베이스(D/B)의 구성 로직과 시스템 활용방안을 고찰하며, 산업구조를 이해하고 기업의 신제품 개발을 위한 핵심정보가 되고 있는 지능형 밸류체인 분석 시스템의 네트워크 가시화 기능을 살펴보기로 한다. 한 기업이 다른 기업 대비 경쟁우위를 확보하기 위해서는 보유 특허 또는 현재 생산하고 있는 제품에 대한 경쟁자 식별이 필요하며, 세부 업종별 유사(경쟁)기업을 탐색하는 일은 대상기업의 사업화 경쟁력 확보에 핵심이 된다. 또한 기업간 비즈니스 활동인 거래정보는 유사 분야로 진출할 경우 잠재 거래처 정보를 제공하는 중요한 역할을 수행한다. 이러한 기업간 판매정보를 기반으로 구축된 네트워크 맵을 활용하여 기업 또는 업종 수준의 경쟁자를 식별하는 일은 밸류체인 분석의 핵심모듈로 탑재될 수 있다. 밸류체인 네트워크 시스템(VCNS)은 단순 수집된 종래의 기업정보에 밸류체인(value chain) 및 산업구조 분석개념을 접목하여 개별 기업의 시장경쟁 상황은 물론 특정 산업의 가치사슬 관계를 파악할 수 있다. 특히 업종구조 파악, 경쟁사 동향 파악, 경쟁사 분석, 판매처 및 구매처 발굴, 품목별 산업동향, 유망 품목 발굴, 신규 진입기업 발굴, VC별 핵심기업 및 품목 도출, 해당 기업별 보유 특허 파악 등 기업 레벨에서의 유용한 정보분석 툴로 활용 가능하다. 또한, 거래처 정보 및 재무데이터로부터 분석된 결과의 객관성 및 신뢰성을 기반으로, 현재 국내에서 이용 중인 15,000여개 회원기업과 연구개발서비스업 종사자, 출연(연) 및 공공기관 등에서 사업평가 정보지원, R&D 의사결정 지원 및 중 단기 수요예측 전망 등 다양한 목적(용도)에 밸류체인 네트워크 시스템을 활용할 수 있을 것으로 기대된다. 기업의 사업경쟁력 강화를 위해 정부기관 및 민간 연구개발서비스 기업을 중심으로 기술(특허) 및 시장정보가 제공되어 왔으며, 이는 특허분석(등급, 계량분석 위주) 또는 시장분석(시장보고서 기반 시장규모 및 수요예측 위주)의 형태로 지원되어 왔다. 그러나 기업이 사업화진출 단계에서 겪게 되는 애로요인의 하나인 정보부족을 해결하는데 한계가 있었으며, 특히 경쟁기업 및 거래가능 기업 후보군에 대한 탐색정보는 입수하기 어려웠다. 본 연구를 통해 제안된 네트워크맵 및 보유 데이터 기반의 실시간 밸류체인 가시화 서비스모듈이 중견 중소기업이 당면한 신규시장 진출시 경쟁기업 대비 예상점유율, (예상)매출액 수준, 어느 기업을 컨택하여 유통망(원자재/부품에 대한 공급처, 완제품/모듈에 대한 수요처)을 확보할 지에 대한 핵심정보를 제공할 수 있을 것으로 기대된다. 향후 연구에서는 대체기업(또는 대체품목) 경쟁지표의 개발과 연구주체의 참여를 통한 경쟁요인별 지표의 고도화 연구, VCNS의 성능향상을 위한 데이터마이닝 기술 및 알고리즘을 추가 반영하도록 수행하고자 한다.

특징의 효과적 병합에 의한 광고영상정보의 분류 기법 (A Grouping Method of Photographic Advertisement Information Based on the Efficient Combination of Features)

  • 정재경;전병우
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.66-77
    • /
    • 2011
  • 본 논문은 특징을 효과적으로 병합하여 계층적 색인구조를 적용하는 광고영상의 분류기법에 대한 체계적 방법을 제안한다. 본 방법은 온라인 및 오프라인 상의 광고 영상 정보 관리를 위한 효과적인 응용으로써, 특별히 광고 영상정보의 추적을 위한 전처리 과정을 제공한다. 이를 위하여 전체 영상에 대한 일반적 정보를 포함하는 전역특징과 영상의 지역적 특성에 기반하는 지역특징을 고려한다. 고안된 지역특징은 영상 회전, 스케일링, 잡음추가, 빛의 변화에 불변하여 아핀(Affine) 변환에 의한 화면 차 영상에 대하여도 신뢰성 높은 매칭 도를 얻을 수 있고 동질의 영상 쌍을 검색하는데 있어서도 높은 정확도를 보여준다. 제안 방법은 우선 전역특징으로 전체영상자료에서 다수의 영상 쌍들로 개략적인 영상 군을 구성한 후에, 영상군안에서 지역특징에 의한 동질 영상 쌍들 즉 정밀한 영상 군들로 분리하는 정밀 매칭을 실행한다. 실행시간을 단축하기 위해 전형적인 클러스터링으로 전역특성이 유사한 영상들끼리 그룹화 함으로서 지역특징에 의한 동질 영상 쌍 간 과도한 매칭 시간의 문제점을 극복한다.

적외선 센서정보기반 실시간 실내 대피시뮬레이션 시스템 프로토타입 (A Prototype for Real-time Indoor Evacuation Simulation System using Indoor IR Sensor Information)

  • 남현우;곽수영;전철민
    • Spatial Information Research
    • /
    • 제20권2호
    • /
    • pp.155-164
    • /
    • 2012
  • 실내공간에서 화재, 붕괴 등의 재난이 증가함에 따라 그 피해를 최소화하기 위한 방법 중 하나로 화재 대피시뮬레이터가 활용되고 있다. 주로 대피시뮬레이터의 활용은 건축물의 설계과정에서 피난에 적합한지를 판단하는 피난안전성 검사에 이용되고 있으며, 실제 재난 상황에서의 활용에는 한계가 있다. 그 이유는 대피시뮬레이션 수행결과를 실제 재난 상황에서 활용하기에 몇 가지의 제약조건이 있기 때문이다. 첫째는 기존 대피시뮬레이터는 가상의 인원정보를 이용한 시뮬레이션을 수행하는데, 실제 재난 상황에서는 실제 인원정보를 이용한 시뮬레이션 결과가 필요한 점이다. 둘째는 대피시뮬레이션 수행시간이 길기 때문에 짧은 시간안에 결과를 산출하기 어려운 시간제약적인 조건이다. 셋째는 재실자의 구조활동 및 대피안내에 최적화된 결과데이터의 산출이 어려운 점이다. 본 연구에서는 이들 제약조건을 해결하기 위해 실제 재난 상황에서 활용가능한 결과데이터를 산출하는 대피시뮬레이션 시스템을 제안하고자 한다. 이 시스템은 사전에 수많은 인원분포에 따른 대피시뮬레이션을 수행하고, 그 결과를 DBMS에 저장할 수 있도록 하는 시뮬레이터를 기본으로 하며, 적외선 센서네트워크를 이용하여 건물 내 실제 재실자 인원분포를 파악하고 이와 유사한 인원분포로 수행된 결과데이터를 질의를 통해 검색하여 사용자에게 제공하도록 한다. 마지막으로 개발된 시스템을 캠퍼스 건물에 적용하고 테스트를 수행하는 과정을 예시하였다.

이동 객체의 패턴 탐사를 위한 시공간 데이터 일반화 기법 (KISS Korea Computer Congress 2007)

  • 고현;김광종;이연식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (C)
    • /
    • pp.153-158
    • /
    • 2007
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴 탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념 계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.의 성능을 기대할 수 있을 것이다.onium sulfate첨가배지(添加培地)에서 가장 저조(低調)하였다. vitamin중(中)에서는 niacin과 thiamine첨가배지(添加培地)에서 근소(僅少)한 증가(增加)를 나타내었다.소시켜 항이뇨 및 Na 배설 감소를 초래하는 작용과, 둘째는 신경 경로를 통하지 않고, 아마도 humoral factor를 통하여 신세뇨관에서 Na 재흡수를 억제하는 작용이 복합적으로 나타내는 것을 알 수 있었다.으로 초래되는 복합적인 기전으로 추정되었다., 소형과와 기형과는 S-3에서 많이 나왔다. 이상 연구결과에서 입도분포가 1.2-5mm인 것이 바람직한 것으로 나타났다.omopolysaccharides로 확인되었다. EPS 생성량이 가장 좋은 Leu. kimchii GJ2의 평균 분자량은 360,606 Da이었으며, 나머지 두 균주에 대해서는 생성 EPS 형태와 점도의 차이로 미루어 보아 생성 EPS의 분자구조와 분자량이 서로 다른 것으로 판단하였다.TEX>개로 통계학적으로 유의한 차이가 없었다. Heat shock protein-70 (HSP70)과 neuronal nitric oxide synthase (nNOS)에 대한 면역조직화학검사에서 실험군 Cs2군의 신경세포가 대조군 12군에 비해 HSP70과 nNOS의 과발현을 보였으며, 이는 통계학적으로 유의한 차이를 보였다(p<0.05). nNOS와 HSP70의 발현은 강한 연관성을 보였고(상관계수 0.91, p=0.000), nNOS를 발현하는 세포가 동시에 HSP70도 발현함을 확인할 수 있었다. 결론: 우리는

  • PDF

PubMed 문헌 분석을 통한 한약재 네트워크 다차원 분석 시스템 개발 (Development of Medical Herbs Network Multidimensional Analysis System through Literature Analysis on PubMed)

  • 서동민;유석종;이민호;예상준;김철
    • 한국콘텐츠학회논문지
    • /
    • 제16권6호
    • /
    • pp.260-269
    • /
    • 2016
  • 최근 유전체학의 발전, 웨어러블 디바이스의 확산, IT/NT의 발전 등에 따라 방대한 양의 바이오-메디컬 데이터가 생산되고, 이에 따라 빅데이터를 활용한 헬스케어 산업이 급속히 발달하고 있으며, 이와 관련된 빅데이터 기술은 국민의 건강 증대와 건강한 고령 삶을 제공하는 핵심 기술로 급부상하고 있다. 또한, 한의학에 대한 과학적 접근이 진행되면서 한약재 성분의 효능을 검증하고자 하는 다양한 분자 생물학 분야의 연구가 진행되고 있다. 하지만 관련 한약재의 주요 성분과 관련된 생화학적 기작을 손쉽게 검색할 수 있는 시스템이 갖추어져 있지 못한 실정이다. 그래서 본 논문에서는 PubMed로부터 한약재와 관련된 논문들을 수집후, 수집된 논문들에 대한 문헌 분석을 통해 추출된 한약재 관련 화합물, 유전자 그리고 생물학적 상호작용 정보를 저장 및 관리하는 한약재 정보 데이터베이스를 구축했다. 또한, 연구자들에게 구축한 한약재 정보 데이터베이스에 대한 직관적 분석을 제공하기 위해 화합물, 유전자 그리고 생물학적 상호작용 정보간 계층구조를 기반으로 네트워크를 구성 후, 해당 네트워크에 대한 다차원 분석을 제공하는 시스템을 개발했다. 마지막으로, 본 시스템은 향후 다양한 한약재 성분의 효능 및 생물학적 기작을 파악하는데 중요한 도구로 활용될 것으로 기대한다.

의미적 의존 링크 토픽 모델을 이용한 생물학 약어 중의성 해소 (Semantic Dependency Link Topic Model for Biomedical Acronym Disambiguation)

  • 김선호;윤준태;서정연
    • 정보과학회 논문지
    • /
    • 제41권9호
    • /
    • pp.652-665
    • /
    • 2014
  • 생물학 도메인은 약어 표현이 빈번하며, 실제로 문서에서 중요한 의미를 지니는 개체명들이 약어로 표현되는 경우가 많다. 본 연구에서는 토픽과 링크 정보를 이용하여 약어 중의성을 해결하고 동일한 의미를 가지는 다양한 형태의 약어 원형들(variant forms)에 대한 그룹핑을 시도한다. 이를 위하여 LDA(latent Dirichlet allocation) 기반 의미적 의존 링크 토픽 모델(semantic dependency topic model)을 제안한다. 해당 모델은 생성 모델(generative model)의 일종으로 문서 집합의 각 문서에 등장하는 단어들은 문서에서 발생하는 토픽 분포와 토픽 당 단어 분포에 의해 생성되어 있는 것으로 가정하고, 관측 가능한 문서 집합의 단어들로부터 문서에 내재된 숨어있는 토픽 구조를 추론하여 단어 생성과 토픽 파라미터를 연결시킨다. 본 연구에서는 토픽 정보 외에 단어들 사이에 존재하는 의미적 의존성(semantic dependency)을 링크로 정의하고, 단어 간에 존재하는 링크 정보, 특히 원형과 문장에서 공기하는 단어들 사이의 링크를 파라미터화하여 중의성 해결에 이용하였다. 결과적으로 주어진 문서에 등장하는 약어에 대해 가장 가능성 있는 원형은 해당 모델을 이용하여 추론된 단어-토픽, 문서-토픽, 단어-링크 확률에 의해서 결정된다. 제안하는 모델은 MEDLINE 초록으로부터 Entrez 인터페이스를 이용해 22개의 약어 집합과 186개의 가능한 약어 원형을 이용하여 질의를 생성하고, 이를 이용해 검색된 문서들을 대상으로 학습과 테스트에 이용하였다. 실험은, 주어진 문서에 등장하는 해당 약어에 대한 원형이 무엇인지 예측하는 방식으로 98.3%의 정확률의 높은 성능을 보였다.

광역 객체 컴퓨팅에서 통합(이름/속성) 기반의 동적 바인딩 서비스 모델의 실험분석 (The Experimental Analysis of Integrated (Name/Property) Dynamic Binding Service Model for Wide-Area Objects Computing)

  • 정창원;주수종
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권10호
    • /
    • pp.746-758
    • /
    • 2006
  • 광역 환경에서 존재하는 수많은 서버객체들은 이름이나 속성에 의해, 다양한 중복된 성질을 갖는다. 이러한 같은 성질을 갖는 서버객체들인 중복객체들에게 서비스를 요청할 때, 기존의 네이밍이나 트레이딩 서비스는 중복된 서버객체들의 바인딩 서비스가 불가능하다. 따라서 우리는 광역 컴퓨팅 환경에서 중복객체의 선정 및 동적 바인딩 서비스를 위한 통합모델을 제시하였다. 본 모델은 중복된 객체들의 일치관리 기능뿐만 아니라 시스템들간의 부하 균형화를 유지하기 위해서 최소부하를 갖는 시스템상의 객체를 선정하는 동적 바인딩 서비스 기능을 제공한다. 이러한 목적에서 우리는 광역 컴퓨팅 환경에서 중복특성을 가진 서버객체들의 바인딩을 지원하기 위한 서비스 방안과 모델을 구축해 왔다. 본 논문에서는 구축된 모델에 대해 실험환경을 보이고, 연합 모델에서 클라이언트와 서버와의 바인딩 과정을 성능 평가하였고, 부하균형이 우리의 모델에 적용될 수 있는지 확인하기 위하여 주어진 조건을 이용하여 우리의 모델을 검증하였다. 또한 우리는 광역환경을 위한 도메인들간의 연합을 고려한 모델의 수행결과도 분석하였다. 이들 수행 결과를 통해 기존 네트워크의 물리적인 트리 구조상에서 검색 비용이 적음을 보였다.

사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법 (An Analysis Method of User Preference by using Web Usage Data in User Device)

  • 이승화;최형기;이은석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권3호
    • /
    • pp.189-199
    • /
    • 2009
  • 최근 인터넷 상에 정보가 방대해지면서 사용자의 요구에 맞는 정보 필터링과 개인화 서비스가 매우 중요해지고 있다. 특히 전자상거래 분야에서 상거래를 활성화시키고 정보 제공자에 대한 만족도와 충성도를 높이기 위해, 사용자의 취향을 기반으로 한 정보 추천은 필수적인 요소가 되었다. 기존 추천 시스템은 사용자의 관심 정보를 기술한 사용자 프로파일을 대부분 정보 제공자 측에서 각각 개별적으로 수집하고 이를 기초로 추천 서비스를 제공한다. 따라서 사용자의 정보는 각 정보 제공자 측에 분산되어 존재하며, 사용자 정보가 부족한 서버에서는 초기에 추천 전략을 세우기 어렵다는 문제가 있다. 또한 사용자정보를 가지고 있는 서버의 경우에도 사용자가 해당 서버를 주기적으로 방문하지 않았다면, 사용자의 동적인 취향 변화를 반영하기 어렵다. 따라서 본 논문에서는 사용자의 행동을 통합적이고, 지속적으로 관찰할 수 있는 사용자 기기에서, 사용자가 이용한 웹 문서 분석을 통해 사용자의 관심 분야를 추론하고, 이를 다른 정보 제공자가 이용하는 새로운 구조의 추천 시스템을 제안한다. 또한 제안 시스템은 보다 효율적인 프로파일 생성을 위해, 웹 페이지에서 식별된 정보 블록에서 관심 단어를 추출하고, 앵커 태그를 분석하여 사용자의 이동 경로를 추적하는 특징을 포함하고 있다. 이러한 제안 시스템의 특징을 통해, 사용자 정보가 부족한 상점에서도 초기에 개인화 서비스 제공이 가능해지며, 사용자가 평소에 이용하는 웹 문서로부터 프로파일을 생성함으로써, 사용자의 동적인 취향 변화를 반영할 수 있다. 또한 정보 블록에서 취향 정보를 추출하는 알고리즘을 통해 보다 빠르고 정확한 프로파일 생성이 가능해진다. 본 논문에서는 최근 구매 활동이 있었던 사용자들의 웹 검색 히스토리와 구매 데이터를 이용하여 제안 시스템의 추천 정확도와 프로파일 분석에 소요되는 시간 측면의 이득을 실험하였으며, 그 결과를 통해 시스템의 유효성을 확인하였다.