• 제목/요약/키워드: 구리계촉매

Search Result 17, Processing Time 0.089 seconds

Decomposition of Methanol-Water on $M^{II}$/ Cu / ZnO system ($M^{II}$/ Cu / ZnO 계에서의 메탄올-물의 반응)

  • Young-Sook Lee;Chong-Soo Han;Min-Soo Cho;Kae-Soo Rhee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The reaction of methanol-water mixture to $CO_2$ and $H_2$ on alkaline earth metal-copper-zinc oxide has been studied in the temperature range of 150 ${\sim}\;300^{\circ}C$. Generally the addition of the alkaline earth metal to Cu/ZnO resulted in an enhancement of selectivity for $CO_2$ formation and a reduction of catalytic activity. Measurable activities were found from 150$^{\circ}C$, 200$^{\circ}C$, and 250$^{\circ}C$ on Mg/Cu/ZnO, Ca/Cu/ZnO, and Ba/Cu/ZnO respectively. However, the highest selectivity for $CO_2$ formation was observed in Ba/Cu/ZnO catalyst at 250$^{\circ}C$. The effect of alkaline earth metal or ZnO on the reactivity was investigated using temperature programmed desorption of $CO_2$ or temperature programmed reduction with $H_2$ over catalysts respectively. It was found that $CO_2$ interacts more strongly in the sequence of MgO < CaO < BaO and ZnO decereases the reduction temperature of CuO. From the results, it was suggested that ZnO activates $H_2$ in the redox process of Cu component and alkaline earth metals adsorbs $CO_2$ in the catalytic process.

  • PDF

Tetramethyl orthosilicate(TMOS) Synthesis by the Copper-Catalyzed Reaction of the Metallic Silicon with Methanol (I) - Effect of the Manufacturing Condition and the Composition of Contact Mass on TMOS Synthesis - (구리 촉매하에서 규소와 메탄올의 반응에 의한 Tetramethyl orthosilicate (TMOS) 합성(제1보) - 접촉물질의 제조방법 및 구성성분이 TMOS 합성에 미치는 영향 -)

  • Soh, Soon-Young;Han, Kee-Doo;Won, Ho-Youn;Chun, Yong-Jin;Lee, Bum-Jae;Yang, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.252-258
    • /
    • 1999
  • Tetramethyl orthosilicate (TMOS) was obtained by the direct synthesis of methanol with metallic silicon including copper compound as a catalyst and zinc compound as a promoter. The effects of the preheating temperature and the preparation method of the contact mass on TMOS synthesis were investigated. The composition effects of the contact mass which was composed of metallic silicon with copper catalyst and various metallic halide promoters including Zn, Sn or Cd compound were studied also. The best performance on TMOS synthesis was observed on a mixed bed reactor containing metallic silicon preheated with CuCl as a catalyst and $ZnCl_2$ as a promoter. When Cu/Si = 7 wt %, Zn/Cu = 7 wt % was mixed in a slurry phase and activated into contact mass at $380^{\circ}C$, the average selectivity was 87.2% in the silicon consumption of 69.2% at $220^{\circ}C$.

  • PDF

A Study on Cu-based Catalysts for Oxygen Removal in Nitrogen Purification System (질소 정제 시스템의 산소 제거용 구리계 촉매 연구)

  • Oh, Seung Kyo;Seong, Minjun;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Since the active matrix organic light-emitting diode (AMOLED) encapsulation process is very vulnerable to moisture and oxygen, high-purity nitrogen with minimal moisture and oxygen must be used. In this study, a copper-based catalyst used to remove oxygen from nitrogen in the AMOLED encapsulation process was optimized. Two-component and three-component catalysts composed of CuO, Al2O3, or ZnO were prepared through a co-precipitation method. The prepared catalysts were characterized by using BET, XRD, TPR, and XRF analysis. In order to verify the oxygen removal performance of the catalyst, several catalytic reactions were conducted in a fixed bed reactor, and the corresponding oxygen contents were measured through an oxygen analyzer. In addition, reusability of the catalysts was proven through repetitive regeneration. The properties and oxygen removal capacity of the catalysts prepared with CuO and Al2O3 ratios of 6 : 4, 7 : 3, and 8 : 2 were compared. The number of active sites of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the highest among the 2-component catalysts. Moreover, the reducibility of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best as it had the highest CuO dispersion. As a result, the oxygen removal ability of the catalyst with a ratio of CuO and Al2O3 of 8 : 2 was the best among the 2-component catalysts. The best oxygen removal capacity was obtained when 2wt% of ZnO was added to the sub-optimized catalyst (i.e., CuO : Al2O3 = 8 : 2) probably due to its outstanding reducibility. Furthermore, the optimized catalyst kept its performance during a couple of regeneration tests.

Oxidation of Ascorbic Acid by Crosslinked Poly(4-vinyl pyridine)-Cu(II) Complexes 2. Effect of Crosslinker (가교 폴리(4-비닐피리딘)-구리(II) 착물에 의한 Ascorbic Acid의 산화반응 2. 가교제의 영향)

  • 이석기;서재곤;구광모;전일련;김우식
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.252-258
    • /
    • 2000
  • Various crosslinked poly(4-vinylpyridines) (CHP4VP) having different degrees of crosslinking were synthesized by radical copolymerization of 4-vinylpyridine with if N,N' -1, 6-hexamethylenebisacrylamide, and CHP4VP- Cu(II) complexes were prepared by the method of adsorption equilibrium. The catalytic activity of the complexes for the oxidation of ascorbic acid (AA) was investigated. The oxidation of AA by these complexes showed a kinetic behavior of the Michaelis-Menten type. The catalytic activity of CHP4VP-Cu(I ) catalytic system was increased with increasing the degree of crosslinking of CHP4VP, and its activity was scarcely decreased even after repeated use. However, the tendency of the catalytic activity of CHP4VP-Cu(II) complexes was decreased for the oxidation of AA when compared with that of the previously reported catalytic system containing crosslinked poly(4-vinylpyridine) prepared using N,N'-methylenebisacrylamide as a crosslinker. These results indicate that the degree of crosslinking of CHP4VP and the hydrophobicity of the crosslinker play an important role in the catalytic system of the oxidation of AA.

  • PDF

Studies on Activity and Characteristics of CuO/ZnO/TiO2 Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응을 위한 CuO/ZnO/TiO2계 촉매의 활성 및 특성에 관한 연구)

  • Koh, Hyoung-Lim;Kim, Tae-Won;Lee, Jihn-Koo;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.956-960
    • /
    • 1998
  • Cu-Zn and Cu-Zn-Ti catalysts for the steam reforming of methanol were prepared. This reaction was carried out at atmospheric pressure, $250^{\circ}C$, steam/methanol molar ratio 1.5, and contact time 0.1 g-cat.hr/mL-feed. In case of the catalyst with 3 mol% of $TiO_2$, the activity was superior to that of catalysts without $TiO_2$. The reaction products were mainly hydrogen and carbon dioxide. It was found that catalytic activity was not related to specific surface area but affected by metallic copper area which was measured by $N_2O$ decomposition and increased with the addition of $TiO_2$ content. XPS and XRD showed that the oxidation state of zinc was not changed during reaction, but oxidation states of copper existed in Cu(0) or Cu(I).

  • PDF

Preparation of Electroless Copper Plated Activated Carbon Fiber Catalyst and Reactive Evaluation of NO Removal (무전해 도금법으로 제조된 구리 함유 활성탄소섬유 촉매의 제조와 NO 제거 반응성 평가)

  • Yoon, Hee-Seung;Oh, Jong Hyun;Lee, Hyung Keun;Jeon, Jong-Ki;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.863-867
    • /
    • 2008
  • Pitch based activated carbon fiber(ACF) was prepared from reformed naphtha cracking bottom oil(NCB oil) by melt spinning. The fibers obtained were stabilized, carbonized, and then steam activated. The ACF was sensitized with Pd-Sn catalytic nuclei via a single-step activation approach. This sensitized ACF was used as precursors for obtaining copper plated ACFs via electroless plating. ACFs uniformly decorated with metal particles were obtained with reduced copper plating in the reaction solution. Effects of the amount of copper on characteristics of ACF/Cu catalysts were investigated through BET surface area, X-ray diffraction, scanning emission microscopy, and ICP. The amount of copper increased with plating time, but the surface area as well as the pore volume decreased. NO conversion increased with reaction temperature. NO conversion decreased with increasing the amount of copper, which is seemed to be due to the reduction of surface area as well as the dispersion of copper.

Selective Oxidation of Acrolein over Cupric Salt of 12-Molybdophosphoric Acid (12-몰리브도 인산 동염 촉매상에서 아크롤레인의 선택 산화반응)

  • Kim, Kyung-Hoon;Na, Suk-Eun;Park, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.721-730
    • /
    • 1993
  • Various catalysts of $Cu_xH_3-{_{2x}}PMo_{12}O_{40}{\cdot}_nH_2O$ with different x-values have been prepared and characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy, BET surface-area measurement, electron microscopy, and temperature programmed desorption of ammonia. The properties of these catalysts in acrolein oxidation have been investigated in a continuous-flow fixed-bed reactor. The catalysts lost their water of crystallization at about $200^{\circ}C$ and their constitutional water between 300 and $400^{\circ}C$. The Keggin structure of the catalysts was identified by infrared spectroscopy. The decomposition of Keggin anion, $(PMo_{12}O_{40})^{3-}$, was increased with the increase of substituted copper content and identifiable $MoO_3$ and $P_2O_5$ as decomposition products were observed. The conversion of acrolein decreased with the increase of x probably due to the decrease of specific surface area and of total amount of acid sites. But specific reaction rate and selectivity to acrylic acid were maximized at x=1.0, and it showed specific acid site distributions.

  • PDF

Methanol Partial Oxidation over Commercial CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 상업용 촉매에서의 메탄올 부분산화반응)

  • Lim, Mee-Sook;Suh, Soong-Hyuck;Ha, Ki-Ryong;Ahn, Won-Sool
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.2
    • /
    • pp.119-126
    • /
    • 2002
  • The methanol partial oxidation using commercial $CuO/ZnO/Al_2O_3$ catalysts in a plug flow reactor was studied in the temperature range of $200{\sim}250^{\circ}C$ at atmospheric pressure, It was achieved the high activities by Cu-based catalysts and the selectivity of $CO_2$/$H_2$ was 100% when $O_2$ was fully convened. The reactivity changes and their hysteresis with increasing/decreasing temperatures were observed due to the chemical state differences between the oxidation and the reduction on the Cu surface, It was suggested as the two-step reaction: the complete oxidation and the following steam reforming for methanol, which was indicated by the distributions of final products vs. the residence time. In addition, the complete oxidation step was shown to be extremely fast and the total reaction rate can be controlled by the steam reforming reaction.

Surface Study on the Supported Molten Salt Catalyst (담지된 금속염 혼합물 촉매의 표면 연구)

  • Kim, Jong Pal;Lee, Kwang Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.381-385
    • /
    • 2009
  • A basic objective is the preparation and surface studies of supported molten salt catalysts because molten salts can stay as the liquid phase in the range of the ordinary reaction temperature. Many kinds of metal salt mixtures for the formation of molten salt phase are appliable but CuCl and KCl were selected in this study because Cu is considered catalytically reactive in many reactons. The loading of the molten salt was selected as 25 vol% of the total pore volume of ${\gamma}-alumina$ to provide reasonable exposed surface area. The surface structure of catalysts containing molten salts in the ${\gamma}-alumina$ was studied using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). CuCl and KCl were added into the ${\gamma}-alumina$ using concentrated hydrochloric acid solution by the impregnation technique. The surfaces of the prepared catalysts before and after heat treatments were compared and they suggested that the heat treatment of catalysts helped the formation of molten-salt although the surface compositions of CuCl and KCl were not uniform.

SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects (셀룰로오스계 라이오셀 활성탄소섬유의 구리 첨착에 의한 SO2 흡착특성 변화)

  • Kim, Eun Ae;Bai, Byong Chol;Lee, Chul Wee;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.394-399
    • /
    • 2015
  • In this study, the Cu catalyst decorated with activated carbon fibers were prepared for improving $SO_2$ adsorption properties. Flame retardant and heat treatments of Lyocell fibers were carried out to obtain carbon fibers with high yield. The prepared carbon fibers were activated by KOH solution for the high specific surface area and controlled pore size to improve $SO_2$ adsorption properties. Copper nitrate was also used to introduce the Cu catalyst on the activated carbon fibers (ACFs), which can induce various reactions in the process; i) copper nitrate promotes the decomposition reaction of oxygen group on the carbon fiber and ii) oxygen radical is generated by the decomposition of copper oxide and nitrates to promote the activation reaction of carbon fibers. As a result, the micro and meso pores were formed and Cu catalysts evenly distributed on ACFs. By Cu-impregnation process, both the specific surface area and micropore volume of carbon fibers increased over 10% compared to those of ACFs only. Also, this resulted in an increase in $SO_2$ adsorption capacity over 149% than that of using the raw ACF. The improvement in $SO_2$ adsorption properties may be originated from the synergy effect of two properties; (i) the physical adsorption from micro, meso and specific surface area due to the transition metal catalyst effect appeared during Cu-impregnation process and ii) the chemical adsorption of $SO_2$ gas promoted by the Cu catalyst on ACFs.