• Title/Summary/Keyword: 구름 분류

Search Result 66, Processing Time 0.03 seconds

A Cloud Classification Using Fuzzy Method (퍼지 기법을 이용한 구름 분류)

  • Cho, Hyun-Hak;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.355-359
    • /
    • 2009
  • 본 논문에서는 퍼지 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 본 논문에서는 가시 영상과 적외 영상을 대상으로 육지 영역은 RGB 컬러 정보 중에 G 채널 값의 수치가 높고, 바다영역에서는 B 채널 값의 수치가 높다는 정보를 이용한다. 이 정보를 이용하여 육지 영역에서는 R과 B 채널 값을 적용하고, 바다 영역에서는 R과 G 채널 값을 적용한다. 가시 영상과 적외 영상에서 임계치를 적용하여 잡음(구름 이외의 영역)을 제거하고, 잡음을 제거한 영상에서 육지 영역과 바다 영역을 구분한 후, 각 R, G, B 채널 정보를 퍼지 기법에 적용하여 구름 영역을 판별한다. 그리고 가시영상과 적외 영상에 모두 포함된 구름 영역에 대해서는 두 영상을 합성하여 구름을 판별한다. 제안된 기법을 구름 분류에 적용한 결과, 제안된 방법이 기존의 양자화를 적용한 방법보다 구름의 분류 성능이 개선된 것을 확인하였다.

  • PDF

A Cloud Analysis Using Near Infrared Image and Fuzzy Logic (근적외 영상과 퍼지 퍼지 논리를 이용한 구름 분석)

  • Hwang, Jin-Kun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.261-263
    • /
    • 2009
  • 본 논문에서는 퍼지 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 제안된 방법은 각각 영상에 대해 R채널의 임계치를 적용하여 잡음을 제거하며, 잡음 영역이 제거된 각각의 근적외 영상과 가시 영상의 반사 특성 및 근적외 영상과 적외 영상의 방출 특성의 특징을 구한 후, 각각의 임계치를 적용하여 1차적으로 구름을 판별한다. 1차적으로 구름 판별에서 제외된 영역에 대해서는 가시 및 적외 영상의 R 채널 값을 퍼지 기법에 적용하여 2차적으로 구름의 종류를 판별한다. 1차적으로 판별된 구름 영역과 2차적으로 판별된 구름 영역을 합성하여 최종 구름 영역을 도출한다. 제안된 방법을 실험한 결과, 기존의 구름 분류 방법보다 제안된 방법이 구름 분류의 성능이 개선된 것을 확인하였다.

  • PDF

Taxonomic Study on Korean Stereum (한국산 꽃구름버섯속의 분류학적 연구)

  • Lim, Young-Woon;Jung, Hack-Sung
    • The Korean Journal of Mycology
    • /
    • v.27 no.5 s.92
    • /
    • pp.349-353
    • /
    • 1999
  • The genus Stereum is consisted of species having smooth, binucleate amyloid spores, pseudocystidia and dimitic basidiocarps without clamps. There are five recorded species of Stereum in Korea. Through the specimen examination of Seoul National University Fungal Collection, five more species of Stereum, S. subtomentosum, S. peculiare, S. sanguinolentum, S. striatum and S. complicatum, were confirmed as unrecorded species to Korea. They are registered here with Korean names as well as English descriptions and a key to Korean Stereum species is attached together.

  • PDF

A Classification of Clouds Observed in Korea (우리나라에서 관측된 구름의 분류)

  • So, Seun-Seup;Jeon, Sam-Jin
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.565-578
    • /
    • 1997
  • Clouds are usually formed by adiabatic cooling through ascending currents, radiation cooling or a mixture of warm air and cold one. Ascending currents are caused by covection currents, or they are accompanied with fronts. Thus clouds are formed through various kinds of causes and procedures. So they are various in height and shape. Form of clouds was classified on the basis of the thecriteria that L. Howard proposed in 1803. He distinguished three simple, fundamental classes-Cirrus, Cumulus, Stratus-from which the others were derived by trasition or association. And they are subdivided into 10 genera according to their height and shape. Most of the clouds are subdivided into the detailed kinds to the characteristics such as appearance or intensity of convection current. Sometimes completly different shape of cloud can be developed out of the 'mother-cloud'. In korea, the stratocumulus, altostratus and cirrus clouds frequently appear. Generally we are likely to have rain or snow from the stratus cloud forms(As, St, Sc) and rain shower or hail from the cumulus forms(Ac, Cu, Cb).

  • PDF

Construction of Corrected Image about Cloud Cover Area Using Multi-temporal Landsat Data (다시기 Landsat 자료를 이용한 구름지역 보정 영상 제작)

  • Han, Sang-Hyun;Park, Joon-Kyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.845-847
    • /
    • 2012
  • 본 논문에서는 다수의 Landsat 영상을 이용하여 구름지역을 보정한 영상을 제작하였다. 비슷한 시기에 취득된 다수의 영상에서 구름을 제거하고, 구름이 제거된 부분을 다른 영상의 온전한 화소값을 기준으로 복원함으로써 효과적으로 구름지역 보정 영상을 제작할 수 있었다. 제작된 영상은 구름 때문에 식별이 불가능한 지역을 크게 감소시켰으며, 주기적인 위성영상의 취득이 어려운 여건을 개선하는 한편, 대규모 지역의 변화탐지 및 영상분류 등 다양한 분야에 활용될 것이다.

  • PDF

Comparative Experiment of Cloud Classification and Detection of Aerial Image by Deep Learning (딥러닝에 의한 항공사진 구름 분류 및 탐지 비교 실험)

  • Song, Junyoung;Won, Taeyeon;Jo, Su Min;Eo, Yang Dam;Park, So young;Shin, Sang ho;Park, Jin Sue;Kim, Changjae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.409-418
    • /
    • 2021
  • As the amount of construction for aerial photography increases, the need for automation of quality inspection is emerging. In this study, an experiment was performed to classify or detect clouds in aerial photos using deep learning techniques. Also, classification and detection were performed by including satellite images in the learning data. As algorithms used in the experiment, GoogLeNet, VGG16, Faster R-CNN and YOLOv3 were applied and the results were compared. In addition, considering the practical limitations of securing erroneous images including clouds in aerial images, we also analyzed whether additional learning of satellite images affects classification and detection accuracy in comparison a training dataset that only contains aerial images. As results, the GoogLeNet and YOLOv3 algorithms showed relatively superior accuracy in cloud classification and detection of aerial images, respectively. GoogLeNet showed producer's accuracy of 83.8% for cloud and YOLOv3 showed producer's accuracy of 84.0% for cloud. And, the addition of satellite image learning data showed that it can be applied as an alternative when there is a lack of aerial image data.

The research evaluation of shadow influence in NOAA AVHRR data (NOAA AVHRR 자료에서 구름으로 인한 그림자 영향에 관한 조사)

  • Kim, Dong-Hee;Ryutaro, Tateishi;Choi, Seung-Pil;Choi, Chul-Soon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.281-284
    • /
    • 2004
  • 광범위한 면적의 토지피복분류를 관찰하는데 유용하게 사용되고 있는 NOAA AVHRR 자료는 자료의 방대한 양과 구름에 의한 영향을 없애기 위하여 일반적으로 MVC(Maximum Value Composite) 처리를 하여 사용한다. 그러나 수신당시의 여러 가지 환경인자(구름, 저주파 노이즈, 산란, 구름의 그림자 등)에 의하여 각 채널의 패턴이 변화하여 오독을 할 위험성이 있다. 특히 그림자의 영향에 의해 측정치가 변화하는 NOAA 위성의 채널2영역에서는 이러한 특징이 두드러진다. 따라서 본 연구에서는 지상에서 실제로 측정한 자료를 기초로 하여 NOAA 영상자료에서 구름으로 인한 그림자의 영향에 관하여 조사하였고, 한 픽셀안에서 그림자의 영향이 60%이상이 될 경우에는 오독의 가능성이 높은 것으로 나타났다.

  • PDF

Early Multiple Fault Identification of Low-Speed Rolling Element Bearings (저속 구름 베어링의 다중 결함 조기 검출)

  • Kang, Hyunjun;Jeong, In-Kyu;Kang, Myeongsu;Kim, Jong-Myon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.749-752
    • /
    • 2014
  • 본 논문에서는 저속으로 동작하는 구름 베어링의 다중 결함 조기 검출을 위해 결함 특징 추출, 효과적인 특징 선택, 선택된 특징을 이용한 결함 분류의 세 단계로 구성된 결함 진단 기법을 제안한다. 1단계에서 이산 웨이블릿 변환을 이용하여 미세성분으로부터 통계적 결함 특징을 추출하고, DET(distance evaluation technique)를 이용하여 추출한 결함 특징 가운데 베어링 다중 결함 검출에 효과적인 특징을 선택한다. 마지막으로 선택된 특징을 k-NN(k-Nearest Neighbors) 분류기 입력으로 사용함으로써 결함을 진단한다. 본 논문에서는 제안한 결함 진단 기법의 성능을 분류 정확도 측면에서 평가한 결과 95.14%의 높은 분류 정확도를 보였다.

Analysis of Cloud Properties Related to Yeongdong Heavy Snow Using the MODIS Cloud Product (MODIS 구름 산출물을 이용한 영동대설 관련 구름 특성의 분석)

  • Ahn, Bo-Young;Cho, Kuh-Hee;Lee, Jeong-Soon;Lee, Kyu-Tae;Kwon, Tae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.71-87
    • /
    • 2007
  • In this study, 14 heavy snow events in Yeongdong area which are local phenomena are analyzed using MODIS cloud products provided from NASA/GSFC. The clouds of Yeongdong area at observed at specific time by MODIS are classified into A, B, C Types, based on the characteristic of cloud properties: cloud top temperature, cloud optical thickness, Effective Particle Radius, and Cloud Particle Phase. The analysis of relations between cloud properties and precipitation amount for each cloud type show that there are statistically significant correlations between Cloud Optical Thickness and precipitation amount for both A and B type and also significant correlation is found between Cloud Top Temperature and precipitation amount for A type. However, for C type there is not any significant correlations between cloud properties and precipitation amount. A-type clouds are mainly lower stratus clouds with small-size droplet, which may be formed under the low level cold advection derived synoptically in the East sea. B-type clouds are developed cumuliform clouds, which are closely related to the low pressure center developing over the East sea. On the other hand, C-type clouds are likely multi-layer clouds, which make satellite observation difficult due to covering of high clouds over low level clouds directly related with Yeongdong heavy snow. It is, therefore, concluded that MODIS cloud products may be useful except the multi-layer clouds for understanding the mechanism of heavy snow and estimating the precipitation amount from satellite data in the case of Yeongdong heavy snow.

Land Cover Classification in order to Predict Soil Moisture Using Satellite Image (인공위성 영상을 통해 토양수분 예측을 위한 토지피복 분류)

  • Yu, Myung-Su;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.322-322
    • /
    • 2011
  • 지표에서의 토양수분은 작은 구성비를 가짐에도 불구하고 여러 수문 현상을 연계하는 매우 중요한 인자로써 최근 연구가 활발하게 진행되고 있다. 토양수분은 침투나 침루를 통하여 강우와 지하수를 연결하는 기능을 함과 동시에 강우사상에 따른 유출특성에 직접적인 영향을 미치며 증발산을 통하여 에너지 순환을 연결하는 기능을 하는 인자로 기후변화와 인간의 활동에 의해 영향을 받는다. 지난 수십 년간 산림개간과 도시화는 토지이용의 변화를 초래하여 토지피복의 변화를 초래하였다. 도시화는 불투수층을 증가시켰고, 산림개간으로 산림이 농장으로 변하여 침투율을 감소시켜 유출률의 증가를 초래하였다. 이처럼 토지피복의 변화는 토양수분의 변화에 직접적인 영향을 미친다. 본 연구에서는 토지피복 분류를 위해 구름의 영향이 적은 Landsat TM 영상을 사용하여 청미천 유역의 토지피복을 분류하여 토지피복도를 작성하였다. 청미천 유역은 현재 국제수문관측사업(IHP)의 일환으로 체계적인 수문관측이 진행되고 있는 지점으로, 추후 인공위성 영상을 통해 산정한 토양수분 자료를 비교할 수 있는 유역이다. Landsat TM 영상은 2009년 5월 23일에 관측된 115-34(path row) 영상으로 구름이 거의 없는 날의 자료를 사용하였다. 다중 스펙트럴 위성영상인 Landsat TM 영상은 30m 공간해상도로써 토지피복분류와 식생 등의 정보를 추출하는데 적합한 것으로 알려져 있다. 청미천 유역의 위성영상에 대하여 영상의 전처리 과정을 거쳐 무감독분류와 감독분류기법을 적용하여 토지피복을 분류하였다. 분류한 토지피복도는 국토해양부에서 국가수자원관리 종합정보시스템(WAMIS) 을 통하여 제공되는 토지피복도와 비교하였다.

  • PDF